login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048898 One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-1). Here the 2 (mod 5) numbers (except for n=0). 34
0, 2, 7, 57, 182, 2057, 14557, 45807, 280182, 280182, 6139557, 25670807, 123327057, 123327057, 5006139557, 11109655182, 102662389557, 407838170807, 3459595983307, 3459595983307, 79753541295807, 365855836217682, 2273204469030182, 2273204469030182, 49956920289342682 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is the root congruent to 2 mod 5.

Or, residues modulo 5^n of a 5-adic solution of x^2+1=0.

The radix-5 expansion of a(n) is obtained from the n rightmost digits in the expansion of the following pentadic integer:

  ...422331102414131141421404340423140223032431212 = u

The residues modulo 5^n of the other 5-adic solution of x^2+1=0 are given by A048899 which corresponds to the pentadic integer -u:

  ...022113342030313303023040104021304221412013233 = -u

The digits of u and -u are given in A210850 and A210851, respectively. - Wolfdieter Lang, May 02 2012.

For approximations for p-adic square roots see also the W. Lang link under A268922. - Wolfdieter Lang, Apr 03 2016.

REFERENCES

J. H. Conway, The Sensual Quadratic Form, p. 118, Mathematical Association of America, 1997, The Carus Mathematical Monographs, Number 26.

K. Mahler, Introduction to p-Adic Numbers and Their Functions, Cambridge, 1973, p. 35.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1431 (terms 0..200 from Vincenzo Librandi)

G. P. Michon, On the witnesses of a composite integer, Numericana.

G. P. Michon, Introduction to p-adic integers, Numericana.

FORMULA

If n>0, a(n) = 5^n - A048899(n).

From Wolfdieter Lang, Apr 28 2012: (Start)

Recurrence: a(n) = a(n-1)^5 (mod 5^n), a(1) = 2, n>=2. See the J.-F. Alcover Mathematica program and the Pari program below.

a(n) == 2^(5^(n-1)) (mod 5^n), n>=1.

a(n)*a(n-1) + 1 == 0 (mod 5^(n-1)), n>=1.

(a(n)^2 + 1)/5^n = A210848(n), n>=0.

(End)

Another recurrence: a(n) = modp(a(n-1) + a(n-1)^2 + 1, 5^n), n >= 2, a(1) = 2. Here modp(a, m) is the representative from {0, 1, ... ,|m|-1} of the residue class a modulo m. Note that a(n) is in the residue class of a(n-1) modulo 5^(n-1) (see Hensel lifting). - Wolfdieter Lang, Feb 28 2016

EXAMPLE

a(0)=0 because 0 satisfies any equation in integers modulo 1.

a(1)=2 because 2 is one solution of x^2+1=0 modulo 5. (The other solution is 3, which gives rise to A048899.)

a(2)=7 because the equation (5y+a(1))^2+1=0 modulo 25 means that y is 1 modulo 5.

MATHEMATICA

a[0] = 0; a[1] = 2; a[n_] := a[n] = Mod[a[n-1]^5, 5^n]; Table[a[n], {n, 0, 21}] (* Jean-Fran├žois Alcover, Nov 24 2011, after Pari *)

Join[{0}, RecurrenceTable[{a[1] == 2, a[n] == Mod[a[n-1]^5, 5^n]}, a, {n, 25}]] (* Vincenzo Librandi, Feb 29 2016 *)

PROG

(PARI) {a(n) = if( n<2, 2, a(n-1)^5) % 5^n}

(MAGMA) [n le 2 select 2*(n-1) else Self(n-1)^5 mod 5^(n-1): n in [1..30]]; // Vincenzo Librandi, Feb 29 2016

CROSSREFS

The two successive approximations up to p^n for p-adic integer sqrt(-1): this sequence and A048899 (p=5), A286840 and A286841 (p=13), A286877 and A286878 (p=17).

Cf. A000351 (powers of 5), A034939(n) = Min(a(n), A048899(n)).

Cf. A034935. Different from A034935.

Sequence in context: A002658 A175818 A034939 * A034935 A294948 A178769

Adjacent sequences:  A048895 A048896 A048897 * A048899 A048900 A048901

KEYWORD

nonn,easy,nice

AUTHOR

Michael Somos, Jul 26 1999

EXTENSIONS

Additional comments from Gerard P. Michon, Jul 15 2009

Edited by N. J. A. Sloane, Jul 25 2009

Name clarified by Wolfdieter Lang, Feb 19 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 16:47 EST 2020. Contains 331209 sequences. (Running on oeis4.)