The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286840 One of the two successive approximations up to 13^n for 13-adic integer sqrt(-1). Here the 5 (mod 13) case (except for n=0). 16
 0, 5, 70, 239, 239, 143044, 1999509, 6826318, 6826318, 822557039, 85658552023, 1188526486815, 11941488851037, 291518510320809, 2108769149874327, 13920898306972194, 13920898306972194, 2675587335039691558, 63228498770709057089, 513050126578538629605 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..897 Wikipedia, Hensel's Lemma. FORMULA a(0) = 0 and a(1) = 5, a(n) = a(n-1) + 9 * (a(n-1)^2 + 1) mod 13^n for n > 1. PROG (Ruby) def A(k, m, n)   ary = [0]   a, mod = k, m   n.times{     b = a % mod     ary << b     a = b ** m     mod *= m   }   ary end def A286840(n)   A(5, 13, n) end p A286840(100) (Python) def A(k, m, n):       ary=[0]       a, mod = k, m for i in range(n):           b=a%mod           ary+=[b, ]           a=b**m           mod*=m       return ary def a286840(n): return A(5, 13, n) print a286840(100) # Indranil Ghosh, Aug 03 2017, after Ruby (PARI) a(n) = truncate(sqrt(-1+O(13^n))); \\ Michel Marcus, Aug 04 2017 CROSSREFS The two successive approximations up to p^n for p-adic integer sqrt(-1): A048898 and A048899 (p=5), this sequence and A286841 (p=13), A286877 and A286878 (p=17). Cf. A034944, A286838. Sequence in context: A299318 A051538 A218709 * A034944 A064046 A256235 Adjacent sequences:  A286837 A286838 A286839 * A286841 A286842 A286843 KEYWORD nonn AUTHOR Seiichi Manyama, Aug 01 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 16:19 EST 2020. Contains 332176 sequences. (Running on oeis4.)