login
A276967
Odd integers n such that 2^n == 2^3 (mod n).
8
1, 3, 9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 693, 699, 717, 723, 731, 753, 771, 789, 807
OFFSET
1,2
COMMENTS
Also, integers n such that 2^(n - 3) == 1 (mod n).
Contains A033553 as a subsequence. Smallest term greater than 3 missing in A033553 is 731.
For all m, 2^A015921(m) - 1 belongs to this sequence.
LINKS
MATHEMATICA
Join[{1}, Select[Range[1, 1023, 2], PowerMod[2, # - 3, #] == 1 &]] (* Alonso del Arte, Sep 22 2016 *)
PROG
(PARI) isok(n) = (n % 2) && (Mod(2, n)^n==8); \\ Michel Marcus, Sep 23 2016
CROSSREFS
The odd terms of A015922.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k = 1), A173572 (k = 2), this sequence (k = 3), A033984 (k = 4), A276968 (k = 5), A215610 (k = 6), A276969 (k = 7), A215611 (k = 8), A276970 (k = 9), A215612 (k = 10), A276971 (k = 11), A215613 (k = 12).
Sequence in context: A162486 A067201 A071526 * A114271 A137164 A108701
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Sep 22 2016
STATUS
approved