login
A215613
Odd integers n such that 2^n == 2^12 (mod n).
11
1, 23, 89, 2047, 5969, 1803407, 6531977, 6667079, 7694041, 16252897, 146825647, 284464633, 315096487, 351745417, 413414167, 512694047, 615366953, 2723423687, 3104303327, 3969298807, 5754671737, 7242954137, 8766711119, 14046374879
OFFSET
1,2
COMMENTS
Also, the odd solutions to 2^(n-12) == 1 (mod n). The only even solution is n=12.
For all m, 2^A051446(m)-1 belongs to this sequence.
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..93 (all terms below 10^14)
MATHEMATICA
m = 2^12; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^7, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 15 2018 *)
CROSSREFS
The odd terms of A015937.
Sequence in context: A117049 A142062 A050529 * A306138 A317371 A244632
KEYWORD
nonn
AUTHOR
Max Alekseyev, Aug 17 2012
STATUS
approved