login
A276971
Odd integers n such that 2^n == 2^11 (mod n).
7
1, 3, 11, 15, 31, 35, 51, 121, 341, 451, 455, 671, 781, 1111, 1235, 1271, 1441, 1547, 1661, 1991, 2091, 2101, 2321, 2651, 2761, 2981, 3091, 3421, 3641, 3731, 3751, 4403, 4411, 4631, 4741, 5071, 5401, 5731, 5951, 6171, 6191, 6281, 6611, 6851, 6941, 7051, 7271, 7601, 7711, 8261, 8371, 8435, 8921
OFFSET
1,2
COMMENTS
Also, integers n such that 2^(n-11) == 1 (mod n).
For all m, 2^A128124(m)-1 belongs to this sequence.
LINKS
MATHEMATICA
m = 2^11; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &],
Select[Range[m + 1, 10^6, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
CROSSREFS
The odd terms of A015935.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), A276968 (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), A276970 (k=9), A215612 (k=10), this sequence (k=11), A215613 (k=12).
Cf. A128124.
Sequence in context: A022410 A146254 A039503 * A366813 A192161 A199262
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Sep 22 2016
STATUS
approved