login
A215612
Odd integers n such that 2^n == 2^10 (mod n).
11
1, 7, 73, 9271, 3195367, 6769801, 15413863, 24540337, 47424961, 52268743, 146583343, 384586849, 469501471, 475882081, 859764727, 1097475991, 1169323417, 1400034919, 2518532047, 2870143993, 3258854623, 5609707729, 6022970047, 6420870271, 9011348521
OFFSET
1,2
COMMENTS
Also, the odd solutions to 2^(n-10) == 1 (mod n). The only even solution is n=10.
For all m, 2^A033982(m)-1 belongs to this sequence.
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..209 (all terms below 10^14)
MATHEMATICA
m = 2^10; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^7, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 15 2018 *)
CROSSREFS
The odd terms of A015932.
Sequence in context: A364938 A134281 A360934 * A292012 A051154 A172257
KEYWORD
nonn
AUTHOR
Max Alekseyev, Aug 17 2012
STATUS
approved