login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215615
From Wendt's determinant compute sqrt(abs(A048954(n))/(2^n - 1)).
5
1, 1, 2, 5, 11, 0, 232, 2295, 26714, 453871, 7053157, 0, 7715707299, 545539395584, 42297694603648, 4883188189089105, 531361846217471443, 0, 28649272821614715410221, 14214363393075742724609375, 7526219790642312236217153392, 5968603205606800870499639536231
OFFSET
1,3
COMMENTS
E. Lehmer claimed, and J. S. Frame proved, that a(n) is an integer (Ribenboim 1999, p. 128).
The subsequence for even n is A129205.
See A048954 for additional comments, references, links, and cross-references.
REFERENCES
P. Ribenboim, Fermat's Last Theorem for Amateurs, Springer-Verlag, NY, 1999, pp. 126, 136.
FORMULA
a(n) = ((-1)^(n-1)*A048954(n)/(2^n - 1))^(1/2).
MATHEMATICA
w[n_] := Resultant[x^n - 1, (1 + x)^n - 1, x]; Table[ Sqrt[Abs[w[n]]/(2^n - 1)], {n, 25}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Aug 17 2012
STATUS
approved