login
A276968
Odd integers n such that 2^n == 2^5 (mod n).
7
1, 3, 5, 25, 65, 85, 145, 165, 185, 205, 221, 265, 305, 365, 445, 465, 485, 505, 545, 565, 685, 745, 785, 825, 865, 905, 965, 985, 1025, 1085, 1145, 1165, 1205, 1285, 1345, 1385, 1405, 1465, 1565, 1585, 1685, 1705, 1745, 1765, 1865, 1925, 1945, 1985, 2005, 2045, 2105, 2165, 2245, 2285, 2305, 2325
OFFSET
1,2
COMMENTS
Also, integers n such that 2^(n-5) == 1 (mod n).
Contains A050993 as a subsequence.
For all m, 2^A128122(m)-1 belongs to this sequence.
LINKS
MATHEMATICA
m = 2^5; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &],
Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
CROSSREFS
The odd terms of A015925.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), this sequence (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), A276970 (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).
Sequence in context: A364961 A009002 A119882 * A074701 A318179 A327468
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Sep 22 2016
STATUS
approved