login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266396
Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 80640.
1
0, 0, 0, 10, 41, 105, 215, 385, 630, 966, 1410, 1980, 2695, 3575, 4641, 5915, 7420, 9180, 11220, 13566, 16245, 19285, 22715, 26565, 30866, 35650, 40950, 46800, 53235, 60291, 68005, 76415, 85560, 95480, 106216, 117810, 130305, 143745, 158175, 173641, 190190
OFFSET
1,4
FORMULA
From Colin Barker, Dec 29 2015: (Start)
a(n) = (n^4+30*n^3-205*n^2+390*n-216)/24.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>5.
G.f.: x^4*(10-9*x) / (1-x)^5.
(End)
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 10, 41}, 50] (* Harvey P. Dale, Nov 18 2024 *)
PROG
(PARI) concat(vector(3), Vec(x^4*(10-9*x)/(1-x)^5 + O(x^50))) \\ Colin Barker, May 05 2016
CROSSREFS
Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217.
Sequence in context: A247201 A022278 A246972 * A006323 A178073 A102784
KEYWORD
nonn,easy
AUTHOR
STATUS
approved