login
A265288
Decimal expansion of Sum_{n >= 1} (phi - c(2*n-1)), where phi is the golden ratio (A001622), and c(n) is the n-th convergent to the continued fraction expansion of phi.
24
7, 5, 7, 2, 0, 4, 3, 7, 5, 0, 4, 6, 0, 0, 7, 3, 3, 8, 6, 4, 7, 8, 2, 5, 2, 6, 0, 6, 7, 3, 7, 7, 4, 8, 3, 0, 1, 0, 5, 8, 5, 2, 0, 1, 6, 1, 5, 6, 6, 7, 8, 4, 1, 9, 2, 9, 3, 2, 0, 1, 5, 5, 1, 1, 3, 4, 7, 1, 9, 0, 7, 3, 6, 6, 1, 7, 8, 3, 5, 7, 6, 6, 9, 7, 9, 5
OFFSET
0,1
COMMENTS
Define the lower deviance of x > 0 by dL(x) = Sum_{n>=1} (x - c(2*n-1,x)), where c(k,x) = k-th convergent to x. The greatest lower deviance occurs when x = golden ratio, so that this constant is the absolute maximal lower deviance.
Guide to related constants (as sequences):
x Sum{x-c(2*n-1)} Sum{c(2*n)-x} Sum|c(2*n)-c(2*n-1)|
(1+sqrt(5))/2 A265288 A265289 A265290
FORMULA
Equals Sum_{k >= 1} 1/(phi^(2*k-1) * F(2*k-1)), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Oct 05 2020
From Peter Bala, Aug 19 2022: (Start)
The constant equals Sum_{k >= 1} (-1)^(k+1)/F(2*k). The constant also equals (3/5)*Sum_{k >= 1} (-1)^(k+1)/(F(2*k)*F(2*k+2)*F(2*k+4)) + 11/15.
A rapidly converging series for the constant is sqrt(5) * Sum_{k >= 1} x^(k*(k+1)/2)/ (x^k - 1) at x = phi - 2 = -(3 - sqrt(5))/2. (End)
EXAMPLE
0.75720437504600733864782526067377483...
The convergents to x are c(1) = 1, c(2) = 2, c(3) = 3/2, c(4) = 5/3, ..., so that
A265288 = (x - 1) + (x - 3/2) + (x - 8/5) + ... ;
A265289 = (2 - x) + (5/3 - x) + (13/8 - x ) + ... ;
A265290 = (2 - 1) + (5/3 - 3/2) + (13/8 - 8/5) + ...
MAPLE
x := -(3 - sqrt(5))/2:
evalf(sqrt(5)*add(x^(n*(n+1)/2)/(x^n - 1), n = 1..24), 100); # Peter Bala, Aug 21 2022
MATHEMATICA
x = GoldenRatio; z = 600; c = Convergents[x, z];
s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
N[s1 + s2, 200]
RealDigits[s1, 10, 120][[1]] (* A265288 *)
RealDigits[s2, 10, 120][[1]] (* A265289 *)
RealDigits[s1 + s2, 10, 120][[1]] (* A265290 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 06 2015
STATUS
approved