login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153386 Decimal expansion of Sum_{n>=1} 1/Fibonacci(2*n). 10
1, 5, 3, 5, 3, 7, 0, 5, 0, 8, 8, 3, 6, 2, 5, 2, 9, 8, 5, 0, 2, 9, 8, 5, 2, 8, 9, 6, 6, 5, 1, 5, 9, 9, 0, 0, 6, 3, 6, 7, 0, 1, 1, 5, 9, 1, 0, 7, 1, 1, 3, 8, 5, 6, 3, 2, 3, 5, 2, 6, 3, 6, 6, 5, 1, 3, 1, 0, 4, 7, 2, 7, 8, 6, 2, 8, 9, 0, 9, 4, 1, 6, 0, 1, 6, 5, 0, 2, 3, 1, 6, 6, 3, 6, 9, 6, 9, 3, 3, 6, 5, 3, 2, 7, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..105.

Richard André-Jeannin, Problem B-745, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 31, No. 3 (1993), p. 277; Fun with Unit Fractions, Solution to Problem B-745 by Paul S. Bruckman, ibid., Vol. 33, No. 1 (1995), p. 86.

A. F. Horadam, Elliptic Functions and Lambert Series in the Summation of Reciprocals in Certain Recurrence-Generated Sequences, The Fibonacci Quarterly, Vol. 26, No. 2 (1988), pp. 98-114.

FORMULA

Equals sqrt(5) * (L((3-sqrt(5))/2) - L((7-3*sqrt(5))/2)), where L(x) = Sum_{k>=1} x^k/(1-x^k) (Horadam, 1988). - Amiram Eldar, Oct 04 2020

From Gleb Koloskov, Sep 04 2021: (Start)

Equals 1/2 + (sqrt(5)/log(phi))*(log(5)/8 + 3*Integral_{x=0..infinity} sin(x)/((4*sin(x)^2+5)*(exp(Pi*x/log(phi))-1)) dx), where phi = (1+sqrt(5))/2 = A001622.

Equals 1/2 + (A002163/A002390)*(A016628/8 + 3*Integral_{x=0..infinity} sin(x)/((4*sin(x)^2+5)*(A001113^(A000796*x/A002390)-1)) dx). (End)

Equals 1 + Sum_{n>=1} 1/A065563(2*n-1) (André-Jeannin, 1993). - Amiram Eldar, Jan 15 2022

From Peter Bala, Aug 17 2022: (Start)

Equals 5/3 - 3*Sum_{n >= 1} 1/(F(2*n)*F(2*n+2)*F(2*n+4)), where F(n) = Fibonacci(n).

Conjecture: Equals 151/96 - 6*Sum_{n >= 1} 1/(F(2*n)*F(2*n+4)*F(2*n+6)). (End)

EXAMPLE

1.5353705088362529850...

MATHEMATICA

rd[k_] := rd[k] = RealDigits[ N[ Sum[ 1/Fibonacci[2*n], {n, 1, 2^k}], 105]][[1]]; rd[k = 4]; While[ rd[k] != rd[k - 1], k++]; rd[k] (* Jean-François Alcover, Oct 29 2012 *)

PROG

(PARI) sumpos(n=1, 1/fibonacci(2*n)) \\ Michel Marcus, Sep 04 2021

CROSSREFS

Cf. A000045, A001906 (Fibonacci(2*n)), A065563.

Cf. A000796, A001113, A002163, A002390, A016628, A079586, A153387, A256178, A265288.

Sequence in context: A270915 A319461 A201762 * A112920 A109364 A122277

Adjacent sequences:  A153383 A153384 A153385 * A153387 A153388 A153389

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Dec 25 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 7 07:33 EDT 2022. Contains 357270 sequences. (Running on oeis4.)