This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265287 Number of steps needed to reach 1 in the "sqrt(2)*x + 1" problem. 1
 0, 1, 5, 2, 4, 6, 6, 3, 14, 5, 5, 7, 13, 7, 7, 4, 18, 15, 12, 6, 9, 6, 20, 8, 17, 14, 11, 8, 11, 8, 8, 5, 19, 19, 19, 16, 19, 13, 10, 7, 13, 10, 13, 7, 7, 21, 18, 9, 21, 18, 18, 15, 18, 12, 12, 9, 30, 12, 12, 9, 12, 9, 9, 6, 23, 20, 17, 20, 23, 20, 23, 17, 17 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The sqrt(2)*x + 1 problem is as follows: start with a number x. If x is even, divide it by 2, otherwise multiply it by sqrt(2) and add 1, and then take the integer part. Conjecture: the trajectory reaches 1 for all n. Generalization: If we consider the "sqrt(3)*x + 1" problem (see A264789), we observe three possible behaviors for such trajectories when n>0: (i) The trajectory reaches 1 (and enters the "trivial" cycle 2-1-2-1-2...). (ii) Cyclic trajectory. The trajectory becomes periodic and the period does not contain a 1. (iii) The trajectory is divergent (I conjecture that this cannot occur). If we consider the "sqrt(q)*x+1" problem with q>3 but different from 9, we observe divergent trajectories. LINKS Michel Lagneau, Table of n, a(n) for n = 1..10000 EXAMPLE a(7) = 6 because 7 -> 10 -> 5 -> 8 -> 4 -> 2 -> 1 with 6 iterations where: 10 = floor(7*sqrt(2)+1);   5 = 10/2;   8 = floor(5*sqrt(2)+1);   4 = 8/2;   2 = 4/2 and 1 = 2/2 is the end of the cycle. MATHEMATICA f[n_]:=Module[{a=n, k=0}, While[a!=1, k++; If[EvenQ[a], a=a/2, a=Floor[a*Sqrt[2]+1]]]; k]; Table[f[n], {n, 100}] CROSSREFS Cf. A006577,  A264789. Sequence in context: A064853 A177148 A188739 * A257701 A202494 A112597 Adjacent sequences:  A265284 A265285 A265286 * A265288 A265289 A265290 KEYWORD nonn AUTHOR Michel Lagneau, Dec 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 06:59 EST 2019. Contains 319188 sequences. (Running on oeis4.)