This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265289 Decimal expansion of Sum{c(2n) - x, n=1,2,...}, where c = convergents to (x = golden ratio). 3
 4, 3, 8, 7, 5, 1, 4, 1, 0, 9, 7, 1, 5, 0, 6, 2, 5, 7, 3, 5, 5, 6, 4, 9, 5, 3, 9, 3, 4, 7, 5, 2, 7, 1, 9, 0, 1, 6, 9, 6, 6, 4, 1, 9, 3, 4, 2, 5, 9, 2, 0, 0, 6, 7, 1, 9, 4, 1, 3, 7, 2, 8, 5, 1, 5, 0, 3, 7, 2, 1, 9, 5, 3, 9, 9, 5, 9, 3, 2, 4, 5, 5, 0, 7, 4, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Define the upper deviance of x > 0 by dU(x) = sum{c(2n,x) - x), n=1,2,...}, where c(k,x) = k-th convergent to x.  The greatest upper deviance occurs when x = golden ratio, so that the constant in A265289 is the absolute maximal upper deviance. LINKS EXAMPLE sum = 0.4387514109715062573556495393475271901... MATHEMATICA x = GoldenRatio; z = 600; c = Convergents[x, z]; s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200] s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200] N[s1 + s2, 200] RealDigits[s1, 10, 120][[1]]  (* A265288 *) RealDigits[s2, 10, 120][[1]]  (* A265289 *) RealDigits[s1 + s2, 10, 120][[1]] (* A265290 *) CROSSREFS Cf. A265288, A265290. Sequence in context: A117956 A241638 A110662 * A302258 A132021 A089368 Adjacent sequences:  A265286 A265287 A265288 * A265290 A265291 A265292 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 09:04 EST 2019. Contains 320159 sequences. (Running on oeis4.)