OFFSET
1,2
COMMENTS
This is member p = 7 in the p-family of sequences (p a prime).
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..20000
Peter Bala, A note on the sequence of numerators of a rational function, 2019.
FORMULA
Multiplicative with a(p^e) = 1 if p = 7, else p^e.
Dirichlet g.f.: zeta(s-1)*7*(7^(s-1) - 1)/(7^s - 1).
a(n) = n/A268354(n).
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,7^n).
O.g.f.: F(x) - 6*F(x^7) - 6*F(x^49) - 6*F(x^243) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers. More generally, for m >= 1,
Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) - (7^m - 1)( F(m,x^7) + F(m,x^49) + F(m,x^243) + ...), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence a(n) produces generating functions for the sequences (n^m*a(n))n>=1, m in Z. Some examples are given below. (End)
Sum_{k=1..n} a(k) ~ (7/16) * n^2. - Amiram Eldar, Nov 28 2022
EXAMPLE
From Indranil Ghosh, Jan 31 2017: (Start)
For n = 12, the divisors of 12 are 1,2,3,4,6 and 12. The largest divisor not divisible by 7 is 12. So, a(12) = 12.
For n = 14, the divisors of 14 are 1,2,7 and 14. The largest divisor not divisible by 7 is 2. So, a(14) = 2. (End)
From Peter Bala, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - (6*7)*G(x^7) - (6*49)*G(x^49) - (6*343)*G(x^343) - ..., where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (6/7)*H(x^7) - (6/49)*H(x^49) - (6/343)*H(x^343) - ..., where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (6/7^2)*L(x^7) - (6/49^2)*L(x^49) - (6/343^2)*L(x^343) - ..., where L(x) = Log(1/(1 - x)).
Also, Sum_{n >= 1} (1/a(n))*x^n = L(x) + (6/7)*L(x^7) + (6/7)*L(x^49) + (6/7)*L(x^343) ... . (End)
MATHEMATICA
Table[n/7^IntegerExponent[n, 7], {n, 80}] (* Alonso del Arte, Jun 18 2014 *)
PROG
(PARI) a(n) = f = factor(n); for (i=1, #f~, if (f[i, 1]==7, f[i, 1]=1)); factorback(f); \\ Michel Marcus, Jun 18 2014
(PARI) a(n) = n \ 7^valuation(n, 7) \\ David A. Corneth, Feb 21 2019
(Python)
def A242603(n):
....for i in range(n, 0, -1):
........if n%i==0 and i%7!=0:
............return i # Indranil Ghosh, Jan 31 2017
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Wolfdieter Lang, Jun 18 2014
STATUS
approved