This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132739 Largest divisor of n not divisible by 5. 15
 1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 11, 12, 13, 14, 3, 16, 17, 18, 19, 4, 21, 22, 23, 24, 1, 26, 27, 28, 29, 6, 31, 32, 33, 34, 7, 36, 37, 38, 39, 8, 41, 42, 43, 44, 9, 46, 47, 48, 49, 2, 51, 52, 53, 54, 11, 56, 57, 58, 59, 12, 61, 62, 63, 64, 13, 66, 67, 68, 69, 14, 71, 72, 73, 74, 3, 76, 77 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A000265(a(n)) = a(A000265(n)) = A132740(n). a(n)=A060791(n) when n is not divisible by 5. When n is divisible by 5 a(n) divides A060791(n). Tom Edgar, Feb 08 2014 As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA a(n) = n/A060904(n). Dirichlet g.f. zeta(s-1)*(5^s-5)/(5^s-1). - R. J. Mathar, Jul 12 2012 a(n) = n/5^A112765(n). See A060904. - Wolfdieter Lang, Jun 18 2014 From Peter Bala, Feb 21 2019: (Start) a(n) = n/gcd(n,5^n). O.g.f.: F(x) - 4*F(x^5) - 4*F(x^25) - 4*F(x^125) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers. More generally, for m >= 1, Sum_{n >= 0} a(n)^m*x^n = F(m,x) - (5^m - 1)(F(m,x^5) + F(m,x^25) + F(m,x^125) + ...), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292. Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence produces generating functions for the sequences n^m*a(n), m in Z. Some examples are given below. (End) EXAMPLE From Peter Bala, Feb 21 2019: (Start) Sum_{n >= 1} n*a(n)*x^n = G(x) - (4*5)*G(x^5) - (4*25)*G(x^25) - (4*125)*G(x^125) - ..., where G(x) = x*(1 + x)/(1 - x)^3. Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (4/5)*H(x^5) - (4/25)*H(x^25) - (4/125)*H(x^125) - ..., where H(x) = x/(1 - x). Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (4/5^2)*L(x^5) - (4/25^2)*L(x^25) - (4/125^2)*L(x^125) - ..., where L(x) = Log(1/(1 - x)). Also, Sum_{n >= 1} 1/a(n)*x^n = L(x) + (4/5)*L(x^5) + (4/5)*L(x^25) + (4/5)*L(x^125) + .... (End) MATHEMATICA f[n_]:=Denominator[5^n/n]; Array[f, 100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011*) PROG (Haskell) a132739 n | r > 0     = n           | otherwise = a132739 n' where (n', r) = divMod n 5 -- Reinhard Zumkeller, Apr 08 2011 CROSSREFS Cf. A000265, A038502, A060791, A060904, A112765, A242603. Sequence in context: A277826 A319653 A072438 * A060791 A235380 A116912 Adjacent sequences:  A132736 A132737 A132738 * A132740 A132741 A132742 KEYWORD nonn,mult AUTHOR Reinhard Zumkeller, Aug 27 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 18:12 EDT 2019. Contains 326295 sequences. (Running on oeis4.)