OFFSET
1,2
COMMENTS
a(n) = A060791(n) when n is not divisible by 5. When n is divisible by 5 a(n) divides A060791(n). Tom Edgar, Feb 08 2014
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Peter Bala, A note on the sequence of numerators of a rational function, 2019.
FORMULA
a(n) = n/A060904(n). Dirichlet g.f.: zeta(s-1)*(5^s-5)/(5^s-1). - R. J. Mathar, Jul 12 2012
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,5^n).
O.g.f.: F(x) - 4*F(x^5) - 4*F(x^25) - 4*F(x^125) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers. More generally, for m >= 1,
Sum_{n >= 0} a(n)^m*x^n = F(m,x) - (5^m - 1)(F(m,x^5) + F(m,x^25) + F(m,x^125) + ...), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence produces generating functions for the sequences n^m*a(n), m in Z. Some examples are given below. (End)
Sum_{k=1..n} a(k) ~ (5/12) * n^2. - Amiram Eldar, Nov 28 2022
EXAMPLE
From Peter Bala, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - (4*5)*G(x^5) - (4*25)*G(x^25) - (4*125)*G(x^125) - ..., where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (4/5)*H(x^5) - (4/25)*H(x^25) - (4/125)*H(x^125) - ..., where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (4/5^2)*L(x^5) - (4/25^2)*L(x^25) - (4/125^2)*L(x^125) - ..., where L(x) = Log(1/(1 - x)).
Also, Sum_{n >= 1} 1/a(n)*x^n = L(x) + (4/5)*L(x^5) + (4/5)*L(x^25) + (4/5)*L(x^125) + ....
(End)
MATHEMATICA
f[n_]:=Denominator[5^n/n]; Array[f, 100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011*)
Table[n/5^IntegerExponent[n, 5], {n, 100}] (* Amiram Eldar, Sep 15 2020 *)
PROG
(Haskell)
a132739 n | r > 0 = n
| otherwise = a132739 n' where (n', r) = divMod n 5
-- Reinhard Zumkeller, Apr 08 2011
(PARI) a(n)=n/5^valuation(n, 5) /* Simon Strandgaard, Nov 01 2021 */
(Ruby) p (1..50).map { |n| n /= 5 while (n % 5) == 0; n } # Simon Strandgaard, Nov 01 2021
(Python)
def A132739(n):
a, b = divmod(n, 5)
while b == 0:
a, b = divmod(a, 5)
return 5*a+b # Chai Wah Wu, Dec 05 2021
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Aug 27 2007
STATUS
approved