login
A132739
Largest divisor of n not divisible by 5.
19
1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 11, 12, 13, 14, 3, 16, 17, 18, 19, 4, 21, 22, 23, 24, 1, 26, 27, 28, 29, 6, 31, 32, 33, 34, 7, 36, 37, 38, 39, 8, 41, 42, 43, 44, 9, 46, 47, 48, 49, 2, 51, 52, 53, 54, 11, 56, 57, 58, 59, 12, 61, 62, 63, 64, 13, 66, 67, 68, 69, 14, 71, 72, 73, 74, 3, 76, 77
OFFSET
1,2
COMMENTS
A000265(a(n)) = a(A000265(n)) = A132740(n).
a(n) = A060791(n) when n is not divisible by 5. When n is divisible by 5 a(n) divides A060791(n). Tom Edgar, Feb 08 2014
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019
FORMULA
a(n) = n/A060904(n). Dirichlet g.f.: zeta(s-1)*(5^s-5)/(5^s-1). - R. J. Mathar, Jul 12 2012
a(n) = n/5^A112765(n). See A060904. - Wolfdieter Lang, Jun 18 2014
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,5^n).
O.g.f.: F(x) - 4*F(x^5) - 4*F(x^25) - 4*F(x^125) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers. More generally, for m >= 1,
Sum_{n >= 0} a(n)^m*x^n = F(m,x) - (5^m - 1)(F(m,x^5) + F(m,x^25) + F(m,x^125) + ...), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence produces generating functions for the sequences n^m*a(n), m in Z. Some examples are given below. (End)
Sum_{k=1..n} a(k) ~ (5/12) * n^2. - Amiram Eldar, Nov 28 2022
EXAMPLE
From Peter Bala, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - (4*5)*G(x^5) - (4*25)*G(x^25) - (4*125)*G(x^125) - ..., where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (4/5)*H(x^5) - (4/25)*H(x^25) - (4/125)*H(x^125) - ..., where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (4/5^2)*L(x^5) - (4/25^2)*L(x^25) - (4/125^2)*L(x^125) - ..., where L(x) = Log(1/(1 - x)).
Also, Sum_{n >= 1} 1/a(n)*x^n = L(x) + (4/5)*L(x^5) + (4/5)*L(x^25) + (4/5)*L(x^125) + ....
(End)
MATHEMATICA
f[n_]:=Denominator[5^n/n]; Array[f, 100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011*)
Table[n/5^IntegerExponent[n, 5], {n, 100}] (* Amiram Eldar, Sep 15 2020 *)
PROG
(Haskell)
a132739 n | r > 0 = n
| otherwise = a132739 n' where (n', r) = divMod n 5
-- Reinhard Zumkeller, Apr 08 2011
(PARI) a(n)=n/5^valuation(n, 5) /* Simon Strandgaard, Nov 01 2021 */
(Ruby) p (1..50).map { |n| n /= 5 while (n % 5) == 0; n } # Simon Strandgaard, Nov 01 2021
(Python)
def A132739(n):
a, b = divmod(n, 5)
while b == 0:
a, b = divmod(a, 5)
return 5*a+b # Chai Wah Wu, Dec 05 2021
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Aug 27 2007
STATUS
approved