OFFSET
1,2
COMMENTS
For other numbers than the powers of 2 (that are fixed), this permutation reverses the sequence of exponents in the prime factorization of n from the exponent of 2 to that of the largest prime factor, except that the exponents of 2 and the greatest prime factor present are adjusted by one. Note that some of the exponents might be zeros.
Self-inverse permutation of natural numbers, composition of A122111 & A241909 in either order: a(n) = A122111(A241909(n)) = A241909(A122111(n)).
This permutation preserves both bigomega and the (index of) largest prime factor: for all n it holds that A001222(a(n)) = A001222(n) and A006530(a(n)) = A006530(n) [equally: A061395(a(n)) = A061395(n)].
LINKS
FORMULA
MATHEMATICA
nn = 65; f[n_] := If[n == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ n]; g[w_List] := Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, w]; Table[If[IntegerQ@ #, n/4, g@ Reverse@(# - Join[{1}, ConstantArray[0, Length@ # - 2], {1}] &@ f@ n)] &@ Log2@ n, {n, 4, 4 nn, 4}] (* Michael De Vlieger, Aug 27 2016 *)
PROG
(PARI)
A209229(n) = (n && !bitand(n, n-1));
A241916(n) = if(1==A209229(n), n, my(f = factor(2*n), nbf = #f~, igp = primepi(f[nbf, 1]), g = f); for(i=1, nbf, g[i, 1] = prime(1+igp-primepi(f[i, 1]))); factorback(g)/2); \\ Antti Karttunen, Jul 02 2018
CROSSREFS
The sum of prime indices of a(n) is A243503(n).
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 03 2014
EXTENSIONS
Description clarified by Antti Karttunen, Jul 02 2018
STATUS
approved