login
A241914
After a(1)=0, numbers 0 .. A061395(n)-1, followed by numbers 0 .. A061395(n+1)-1, etc.
5
0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 0, 1, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 0, 1, 2, 0, 0, 1, 2, 3, 4, 5, 6, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0
OFFSET
1,8
LINKS
FORMULA
a(1)=0, a(n) = n - A203623(A241920(n)-1) - 2.
EXAMPLE
Viewed as an irregular table, the sequence is constructed as:
"Row"
[1] 0; (by convention, a(1)=0)
[2] 0; (because A061395(2)=1 (the index of the largest prime factor), we have here terms from 0 to 1-1)
[3] 0, 1; (because A061395(3)=2, we have terms from 0 to 2-1)
[4] 0;
[5] 0, 1, 2; (because A061395(5)=3, we have terms from 0 to 3-1)
[6] 0, 1; (because A061395(6)=2, we have terms from 0 to 2-1)
[7] 0, 1, 2, 3; (because A061395(7)=4, we have terms from 0 to 4-1)
etc.
PROG
(Scheme)
(define (A241914 n) (if (= n 1) 0 (- n (+ 2 (A203623 (- (A241920 n) 1))))))
CROSSREFS
One less than A241915.
Sequence in context: A325592 A161502 A279628 * A324393 A341279 A071482
KEYWORD
nonn,tabf
AUTHOR
Antti Karttunen, May 01 2014
STATUS
approved