

A241914


After a(1)=0, numbers 0 .. A061395(n)1, followed by numbers 0 .. A061395(n+1)1, etc.


5



0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 0, 1, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 0, 1, 2, 0, 0, 1, 2, 3, 4, 5, 6, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,8


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10082


FORMULA

a(1)=0, a(n) = n  A203623(A241920(n)1)  2.


EXAMPLE

Viewed as an irregular table, the sequence is constructed as:
"Row"
[1] 0; (by convention, a(1)=0)
[2] 0; (because A061395(2)=1 (the index of the largest prime factor), we have here terms from 0 to 11)
[3] 0, 1; (because A061395(3)=2, we have terms from 0 to 21)
[4] 0;
[5] 0, 1, 2; (because A061395(5)=3, we have terms from 0 to 31)
[6] 0, 1; (because A061395(6)=2, we have terms from 0 to 21)
[7] 0, 1, 2, 3; (because A061395(7)=4, we have terms from 0 to 41)
etc.


PROG

(Scheme)
(define (A241914 n) (if (= n 1) 0 ( n (+ 2 (A203623 ( (A241920 n) 1))))))


CROSSREFS

One less than A241915.
Cf. A203623, A241920, A241910, A241918.
Sequence in context: A325592 A161502 A279628 * A324393 A071482 A071483
Adjacent sequences: A241911 A241912 A241913 * A241915 A241916 A241917


KEYWORD

nonn,tabf


AUTHOR

Antti Karttunen, May 01 2014


STATUS

approved



