login
A358172
Triangle read by rows: if n has weakly increasing prime indices (a,b,...,y,z) then row n is (z-a+1, z-b+1, ..., z-y+1).
6
1, 2, 1, 1, 1, 3, 2, 2, 4, 2, 1, 1, 1, 2, 1, 3, 3, 3, 5, 2, 2, 2, 1, 6, 1, 1, 4, 4, 3, 2, 1, 1, 1, 1, 4, 7, 2, 2, 2, 1, 8, 5, 3, 3, 3, 4, 3, 5, 5, 2, 2, 9, 2, 2, 2, 2, 1, 3, 1, 6, 6, 6, 2, 1, 1, 3, 4, 4, 4, 7, 10, 3, 3, 2, 11, 3, 3, 1, 1, 1, 1, 1, 4, 5, 4
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
Triangle begins:
1: .
2: .
3: .
4: 1
5: .
6: 2
7: .
8: 1 1
9: 1
10: 3
11: .
12: 2 2
13: .
14: 4
15: 2
16: 1 1 1
17: .
18: 2 1
19: .
20: 3 3
For example, the prime indices of 900 are (1,1,2,2,3,3), so row 900 is 3 - (1,1,2,2,3) + 1 = (3,3,2,2,1).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[If[n==1, {}, 1+Last[primeMS[n]]-Most[primeMS[n]]], {n, 100}]
CROSSREFS
Row lengths are A001222(n) - 1.
Indices of empty rows are A008578.
Even-indexed rows have sums A243503.
Row sums are A326844(n) + A001222(n) - 1.
An opposite version is A356958, Heinz numbers A246277.
Heinz numbers of the rows are A358195, even bisection A241916.
A112798 list prime indices, sum A056239.
A243055 subtracts the least prime index from the greatest.
Sequence in context: A106348 A161092 A029332 * A344058 A134431 A211098
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Dec 20 2022
STATUS
approved