OFFSET
1,1
COMMENTS
All terms are multiples of 4.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1).
FORMULA
G.f.: 4*x*(2*x^6+10*x^5+16*x^4+22*x^3+15*x^2+6*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 10 2014
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - a(n-6) + 2*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 20 2024
EXAMPLE
For a(n) add the parts in the partitions of 4n with smallest part = 1.
13 + 1 + 1 + 1
12 + 2 + 1 + 1
11 + 3 + 1 + 1
10 + 4 + 1 + 1
9 + 5 + 1 + 1
8 + 6 + 1 + 1
7 + 7 + 1 + 1
11 + 2 + 2 + 1
10 + 3 + 2 + 1
9 + 1 + 1 + 1 9 + 4 + 2 + 1
8 + 2 + 1 + 1 8 + 5 + 2 + 1
7 + 3 + 1 + 1 7 + 6 + 2 + 1
6 + 4 + 1 + 1 9 + 3 + 3 + 1
5 + 5 + 1 + 1 8 + 4 + 3 + 1
7 + 2 + 2 + 1 7 + 5 + 3 + 1
5 + 1 + 1 + 1 6 + 3 + 2 + 1 6 + 6 + 3 + 1
4 + 2 + 1 + 1 5 + 4 + 2 + 1 7 + 4 + 4 + 1
3 + 3 + 1 + 1 5 + 3 + 3 + 1 6 + 5 + 4 + 1
1 + 1 + 1 + 1 3 + 2 + 2 + 1 4 + 4 + 3 + 1 5 + 5 + 5 + 1
4(1) 4(2) 4(3) 4(4) .. 4n
------------------------------------------------------------------------
4 32 120 304 .. a(n)
MATHEMATICA
b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}]
LinearRecurrence[{2, -1, 2, -4, 2, -1, 2, -1}, {4, 32, 120, 304, 600, 1056, 1708, 2560}, 40] (* Harvey P. Dale, Oct 18 2018 *)
PROG
(PARI) Vec(4*x*(2*x^6+10*x^5+16*x^4+22*x^3+15*x^2+6*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Mar 09 2014
STATUS
approved