login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123854 Denominators in asymptotic expansion of cubic recurrence sequence A123851. 14
1, 4, 32, 128, 2048, 8192, 65536, 262144, 8388608, 33554432, 268435456, 1073741824, 17179869184, 68719476736, 549755813888, 2199023255552, 140737488355328, 562949953421312, 4503599627370496, 18014398509481984, 288230376151711744, 1152921504606846976 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A cubic analog of the asymptotic expansion A116603 of Somos's quadratic recurrence sequence A052129. Numerators are A123853.

Equals 2^A004134(n); also the denominators in expansion of (1-x)^(-1/4). - Alexander Adamchuk, Oct 27 2006

All terms are powers of 2. Log[2,a(n)] = A004134(n) = 3n - A000120(n) = {0, 2, 5, 7, 11, 13, 16, 18, 23, 25, 28, 30, 34, 36, 39, 41, 47, 49, 52, 54, 58, 60, 63, 65, 70, 72, 75, 77, 81, 83, 86, 88, 95, 97, 100, ...}. - Alexander Adamchuk, Oct 27 2006

Is this the same sequence as A088802? - N. J. A. Sloane, Mar 21 2007

Almost certainly this is the same as A088802. - Michael Somos, Aug 23 2007

Denominators of Gegenbauer_C(2n,1/4,2). The denominators of Gegenbauer_C(n,1/4,2) give the doubled sequence. - Paul Barry, Apr 21 2009

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

LINKS

Table of n, a(n) for n=0..21.

J. Sondow and P. Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, arXiv:math/0610499 [math.CA], 2006.

J. Sondow and P. Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (2007) 292-314.

Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant

FORMULA

a(n) = 2^A004134[n]. a(n) = 2^(3n - A000120(n)). - Alexander Adamchuk, Oct 27 2006

a(n) = denominator(binomial(1/4,n)). - Peter Luschny, Apr 07 2016

EXAMPLE

A123851(n) ~ c^(3^n)*n^(- 1/2)/(1 + 3/4n - 15/32n^2 + 113/128n^3 - 5397/2048n^4 + ...) where c = 1.1563626843322... is the cubic recurrence constant A123852.

MAPLE

f:=proc(t, x) exp(sum(ln(1+m*x)/t^m, m=1..infinity)); end; for j from 0 to 29 do denom(coeff(series(f(3, x), x=0, 30), x, j)); od;

# Alternatively:

A123854 := n -> denom(binomial(1/4, n)):

seq(A123854(n), n=0..21); # Peter Luschny, Apr 07 2016

MATHEMATICA

Denominator[ CoefficientList[ Series[ 1/Sqrt[Sqrt[1 - x]], {x, 0, 19}], x]] (* Robert G. Wilson v, Mar 23 2014 *)

PROG

(Sage)

def A123854(n): return 1 << (3*n-A000120(n))

[A123854(n) for n in (0..19)]  # Peter Luschny, Dec 02 2012

CROSSREFS

Cf. A052129, A112302, A116603, A123851, A123852, A123853.

Cf. A004134, A004130, A000120.

Sequence in context: A239056 A088658 A088802 * A301843 A302070 A302267

Adjacent sequences:  A123851 A123852 A123853 * A123855 A123856 A123857

KEYWORD

frac,nonn

AUTHOR

Petros Hadjicostas and Jonathan Sondow, Oct 15 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 04:19 EST 2018. Contains 318158 sequences. (Running on oeis4.)