login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239055
Numbers n such that the equation Sd(n^k) = Sd(k^n) is satisfied for a k < n, where Sd(x) is the sum of the digits of x.
1
4, 10, 12, 15, 16, 18, 28, 39, 40, 52, 58, 63, 69, 72, 82, 87, 93, 100, 106, 120, 123, 126, 128, 138, 144, 186, 195, 212, 213, 214, 222, 225, 249, 263, 273, 274, 282, 286, 292, 294, 313, 321, 322, 339, 347, 375, 381, 386, 388, 400, 402, 426, 432, 436, 448, 454
OFFSET
1,1
COMMENTS
Obviously if k=n then Sd(n^k)=Sd(k^n). The sequence lists the numbers n whose minimum k that satisfies the equation is less than n.
LINKS
EXAMPLE
For n = 16 the minimum k is 14. In fact 16^14 = 72057594037927936 and the sum of its digits is 85 while 14^16 = 2177953337809371136 and the sum of its digits is, again, 85.
MAPLE
S:=proc(s) local w, j; w:=convert(s, base, 10); sum(w[j], j=1..nops(w)); end:
P:=proc(q) local k, n; for n from 1 to q do k:=0;
while S(n^k)<>S(k^n) do k:=k+1; od; if k<n then print(n); fi; od;
end: P(10^5);
MATHEMATICA
Select[Range@ 454, AnyTrue[Range[# - 1], Function[x, Total@ IntegerDigits[#^x] == Total@ IntegerDigits[x^#]]] &] (* Michael De Vlieger, Sep 22 2015, Version 10 *)
PROG
(PARI) isok(n) = {for (k=1, n-1, if (sumdigits(n^k)==sumdigits(k^n), return (1)); ); } \\ Michel Marcus, Sep 22 2015
CROSSREFS
Cf. A007953.
Sequence in context: A023693 A299634 A181053 * A295129 A287338 A077654
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Apr 02 2014
STATUS
approved