

A181053


Numbers n such that Sum_{k=1..n} (1)^(nk) *tau(k) is prime.


1



4, 10, 12, 14, 26, 28, 30, 32, 34, 50, 52, 54, 56, 58, 82, 92, 94, 124, 130, 132, 134, 136, 138, 176, 178, 186, 234, 240, 292, 300, 302, 304, 306, 308, 312, 366, 372, 374, 376, 384, 390, 392, 394, 398, 458, 540, 548, 564, 566, 570, 632, 634, 638, 644, 646, 654
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The partial alternating sums of the number of divisors tau(.)=A000005(.) are 1, 1, 1, 2, 0, 4, 2, 6, 3, 7, 5, 11, 9, 13,.. for n>=0.
The first primes generated are 2, 7, 11, 13, 29, 31, 37, 41, 41, 71, 73, 79, 83, 83, 131, 157, 157, 223,... for upper limits of the sum as recorded by the sequence.


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000


EXAMPLE

n=4 is in the sequence because sum_{k=1..4} (1)^(4k)*tau(k) = (1)^3*1 + (1)^2*2 + (1)^1*2 + (1)^0*3 = 1 +2 2 + 3 = 2 is prime.


MAPLE

with(numtheory): for n from 1 to 1000 do: x:=sum((((1)^(nk))*tau(k), k=1..n)): if type(x, prime)=true then printf(`%d, `, n): fi: od:


MATHEMATICA

s={}; sum=0; Do[sum = DivisorSigma[0, n]  sum; If[sum > 0 && PrimeQ[sum], AppendTo[s, n]], {n, 1, 654}]; s (* Amiram Eldar, Sep 10 2019 *)


CROSSREFS

Cf. A000005.
Sequence in context: A155475 A023693 A299634 * A239055 A295129 A287338
Adjacent sequences: A181050 A181051 A181052 * A181054 A181055 A181056


KEYWORD

nonn


AUTHOR

Michel Lagneau, Oct 01 2010


EXTENSIONS

Comment slightly extended by R. J. Mathar, Oct 24 2010


STATUS

approved



