The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239059 Sum of the two smallest parts from the partitions of 4n into 4 parts with smallest part = 1. 7
 2, 9, 27, 61, 108, 178, 276, 395, 549, 743, 966, 1236, 1558, 1917, 2335, 2817, 3344, 3942, 4616, 5343, 6153, 7051, 8010, 9064, 10218, 11441, 12771, 14213, 15732, 17370, 19132, 20979, 22957, 25071, 27278, 29628, 32126, 34725, 37479, 40393, 43416, 46606, 49968 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Iain Fox, Table of n, a(n) for n = 1..10000 (first 200 terms from Vincenzo Librandi) Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1). FORMULA G.f.: -x*(x^2+x+2)*(2*x^4-3*x^3-4*x^2-2*x-1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 10 2014 EXAMPLE For a(n) add the smallest two parts in the partitions with smallest part equal to 1..                                              13 + 1 + 1 + 1                                              12 + 2 + 1 + 1                                              11 + 3 + 1 + 1                                              10 + 4 + 1 + 1                                               9 + 5 + 1 + 1                                               8 + 6 + 1 + 1                                               7 + 7 + 1 + 1                                              11 + 2 + 2 + 1                                              10 + 3 + 2 + 1                                               9 + 4 + 2 + 1                                               8 + 5 + 2 + 1                                               7 + 6 + 2 + 1                                               9 + 3 + 3 + 1                                               8 + 4 + 3 + 1                                               7 + 5 + 3 + 1                                               6 + 6 + 3 + 1                                               7 + 4 + 4 + 1                                               6 + 5 + 4 + 1                                               5 + 5 + 5 + 1                               9 + 1 + 1 + 1  10 + 2 + 2 + 2                               8 + 2 + 1 + 1   9 + 3 + 2 + 2                               7 + 3 + 1 + 1   8 + 4 + 2 + 2                               6 + 4 + 1 + 1   7 + 5 + 2 + 2                               5 + 5 + 1 + 1   6 + 6 + 2 + 2                               7 + 2 + 2 + 1   8 + 3 + 3 + 2                               6 + 3 + 2 + 1   7 + 4 + 3 + 2                               5 + 4 + 2 + 1   6 + 5 + 3 + 2                               5 + 3 + 3 + 1   6 + 4 + 4 + 2                               4 + 4 + 3 + 1   5 + 5 + 4 + 2                5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3                4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3                3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3                3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3 1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4     4(1)            4(2)           4(3)            4(4)       ..   4n ------------------------------------------------------------------------      2               9              27              61        ..   a(n) MATHEMATICA b[n_] := Sum[((i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}] PROG (PARI) Vec(-x*(x^2+x+2)*(2*x^4-3*x^3-4*x^2-2*x-1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014 CROSSREFS Cf. A238328, A238340, A238702, A238705, A238706, A239056, A239057. Sequence in context: A222660 A182325 A008910 * A153977 A051746 A277240 Adjacent sequences:  A239056 A239057 A239058 * A239060 A239061 A239062 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt, Mar 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 15:42 EDT 2020. Contains 333127 sequences. (Running on oeis4.)