login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238340 Number of partitions of 4n into 4 parts. 31
1, 5, 15, 34, 64, 108, 169, 249, 351, 478, 632, 816, 1033, 1285, 1575, 1906, 2280, 2700, 3169, 3689, 4263, 4894, 5584, 6336, 7153, 8037, 8991, 10018, 11120, 12300, 13561, 14905, 16335, 17854, 19464, 21168, 22969, 24869, 26871, 28978, 31192, 33516, 35953 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

First differences of A238702. - Wesley Ivan Hurt, May 27 2014

Number of partitions of 4*(n-1) into at most 4 parts. - Colin Barker, Apr 01 2015

LINKS

Iain Fox, Table of n, a(n) for n = 1..10000 (first 200 terms from Vincenzo Librandi)

A. Osorio, A Sequential Allocation Problem: The Asymptotic Distribution of Resources, Munich Personal RePEc Archive, 2014.

Index entries for sequences related to partitions

Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,3,-1).

FORMULA

a(n) = A238328(n) / 4n.

G.f.: x*(x+1)*(2*x^2+x+1) / ((x-1)^4*(x^2+x+1)). - Colin Barker, Mar 10 2014

a(n) = 4/9*n^3 + 1/3*n^2 + O(1). - Ralf Stephan, May 29 2014

a(n) = A238702(n) - A238702(n-1), n>1. - Wesley Ivan Hurt, May 29 2014

Recurrence: Let b(1) = 4, with b(n) = (n/(n-1)) * b(n-1) + 4n * Sum_{i=0..2n} (floor((4n-2-i)/2)-i) * (floor((sign((floor((4n-2-i)/2)-i)) +2)/2)), for n>1. Then a(n) = b(n)/(4n). - Wesley Ivan Hurt, Jun 27 2014

Recurrence: (4*n^3 - 21*n^2 + 44*n - 33)*a(n) = 3*(4*n^2 - 10*n + 9)*a(n-1) + 3*(4*n^2 - 10*n + 9)*a(n-2) + (4*n^3 - 9*n^2 + 14*n - 6)*a(n-3). - Vaclav Kotesovec, Jul 04 2014

a(n) = (4*k-1)*n^2 - (12*k^2-8*k+1)*n + 12*k^3 - 12*k^2 + 3*k, where k = floor((n+2)/3). - Giacomo Guglieri, Apr 30 2019

EXAMPLE

Count the partitions of 4*n into 4 parts:

                                             13 + 1 + 1 + 1

                                             12 + 2 + 1 + 1

                                             11 + 3 + 1 + 1

                                             10 + 4 + 1 + 1

                                              9 + 5 + 1 + 1

                                              8 + 6 + 1 + 1

                                              7 + 7 + 1 + 1

                                             11 + 2 + 2 + 1

                                             10 + 3 + 2 + 1

                                              9 + 4 + 2 + 1

                                              8 + 5 + 2 + 1

                                              7 + 6 + 2 + 1

                                              9 + 3 + 3 + 1

                                              8 + 4 + 3 + 1

                                              7 + 5 + 3 + 1

                                              6 + 6 + 3 + 1

                                              7 + 4 + 4 + 1

                                              6 + 5 + 4 + 1

                                              5 + 5 + 5 + 1

                              9 + 1 + 1 + 1  10 + 2 + 2 + 2

                              8 + 2 + 1 + 1   9 + 3 + 2 + 2

                              7 + 3 + 1 + 1   8 + 4 + 2 + 2

                              6 + 4 + 1 + 1   7 + 5 + 2 + 2

                              5 + 5 + 1 + 1   6 + 6 + 2 + 2

                              7 + 2 + 2 + 1   8 + 3 + 3 + 2

                              6 + 3 + 2 + 1   7 + 4 + 3 + 2

                              5 + 4 + 2 + 1   6 + 5 + 3 + 2

                              5 + 3 + 3 + 1   6 + 4 + 4 + 2

                              4 + 4 + 3 + 1   5 + 5 + 4 + 2

               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3

               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3

               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3

               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3

1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4

    4(1)            4(2)           4(3)            4(4)       ..   4n

------------------------------------------------------------------------

     1               5              15              34        ..   a(n)

MATHEMATICA

CoefficientList[Series[(x + 1)*(2*x^2 + x + 1)/((x - 1)^4*(x^2 + x + 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 27 2014 *)

Table[2*n/9 + n^2/3 + 4*n^3/9 - Floor[n/3]/3 - Floor[(n+1)/3]/3, {n, 1, 50}] (* Vaclav Kotesovec, Jul 04 2014 *)

LinearRecurrence[{3, -3, 2, -3, 3, -1}, {1, 5, 15, 34, 64, 108}, 50] (* Vincenzo Librandi, Aug 29 2015 *)

PROG

(PARI) Vec(x*(x+1)*(2*x^2+x+1)/((x-1)^4*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Mar 24 2014

(MAGMA) I:=[1, 5, 15, 34, 64, 108]; [n le 6 select I[n] else 3*Self(n-1)-3*Self(n-2)+2*Self(n-3)-3*Self(n-4)+3*Self(n-5)-Self(n-6): n in [1..45]]; // Vincenzo Librandi, Aug 29 2015

CROSSREFS

Cf. A238328.

Sequence in context: A147264 A147150 A279231 * A162513 A006003 A026101

Adjacent sequences:  A238337 A238338 A238339 * A238341 A238342 A238343

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt and Antonio Osorio, Feb 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 18:54 EDT 2019. Contains 328308 sequences. (Running on oeis4.)