login
A233263
a(n) = prime(k), where k is such that (Sum_{j=1..k} prime(j)^12) / k is an integer.
1
2, 157, 72673, 52472909, 85790059, 88573873, 16903607381, 4582951241047, 162717490461611, 1220077659512857, 34871545949176799
OFFSET
1,1
COMMENTS
a(11) > 1352363608564489. - Bruce Garner, Aug 30 2021
a(12) > 37124508045065437. - Paul W. Dyson, Jan 04 2024
FORMULA
a(n) = prime(A131272(n)).
EXAMPLE
a(2) = 157, because 157 is the 37th prime and the sum of the first 37 primes^12 = 636533120636984811361212036 when divided by 37 equals 17203597855053643550303028 which is an integer.
MAPLE
A233263:=n->if type(add(ithprime(i)^12, i=1..n)/n, integer) then ithprime(n); fi; seq(A233263(n), n=1..100000); # Wesley Ivan Hurt, Dec 06 2013
MATHEMATICA
t = {}; sm = 0; Do[sm = sm + Prime[n]^12; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^12); s==0 \\ Charles R Greathouse IV, Nov 30 2013
(PARI) S=n=0; forprime(p=1, , (S+=p^12)%n++||print1(p", ")) \\ M. F. Hasler, Dec 01 2013
CROSSREFS
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
Sequence in context: A260886 A142006 A233575 * A124225 A159030 A064071
KEYWORD
nonn,more
AUTHOR
Robert Price, Dec 06 2013
EXTENSIONS
a(8)-a(9) from Bruce Garner, Mar 23 2021
a(10) from Bruce Garner, Aug 30 2021
a(11) from Paul W. Dyson, Jan 04 2024
STATUS
approved