

A260886


Least prime p such that 3 + 4*prime(p*n) = 5*prime(q*n) for some prime q.


4



2, 157, 199, 3539, 1973, 9241, 14629, 167, 48281, 2207, 313, 30631, 35993, 33863, 23, 23, 7963, 17077, 11069, 6043, 4931, 3697, 2339, 14153, 35311, 63149, 111143, 491, 247193, 464237, 2293, 12101, 727, 61403, 243437, 40289, 4337, 241, 2719, 13933, 21817, 6803, 52813, 451279, 166409, 45631, 109891, 490969, 153563, 9127
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: Let a,b,c be pairwise relatively prime positive integers with a+b+c even and a not equal to b. Then, for any positive integer n, there are primes p and q such that a*prime(p*n)  b*prime(q*n) = c.
This includes the conjectures in A260252 and A260882 as special cases.
For example, for a = 7, b = 17, c = 20 and n = 30, we have 7*prime(4695851*30)  17*prime(2020243*30) = 7*2922043519  17*1203194389 = 20 with 4695851 and 2020243 both prime.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..200
ZhiWei Sun, Checking the conjecture for a,b,c = 1..20 and n = 1..30
ZhiWei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 20122015.


EXAMPLE

a(2) = 157 since 3 + 4*prime(157*2) = 3 + 4*2083 = 8335 = 5*prime(131*2) with 157 and 131 both prime.


MATHEMATICA

f[n_]:=Prime[n]
PQ[p_, n_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]/n]
Do[k=0; Label[bb]; k=k+1; If[PQ[(4*f[n*f[k]]+3)/5, n], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", f[k]]; Continue, {n, 1, 50}]


CROSSREFS

Cf. A000040, A260120, A260252, A260882.
Sequence in context: A151614 A103042 A284458 * A142006 A233575 A233263
Adjacent sequences: A260883 A260884 A260885 * A260887 A260888 A260889


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Aug 02 2015


STATUS

approved



