login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128165 Numbers n such that n divides 1 plus the sum of the first n primes. 93
1, 2, 6, 10, 20, 22, 28, 155, 488, 664, 992, 6162, 7840, 7975, 8793, 18961, 32422, 148220, 231625, 332198, 459121, 462932, 2115894, 8108930, 10336641, 11789731, 15500046, 23483195, 46571611, 48582404, 77033887, 105390951, 132421841, 229481560, 1224959312 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(44) > 4.4*10^10. - Robert Price, Dec 15 2013

LINKS

Robert Price, Table of n, a(n) for n = 1..43

OEIS Wiki, Sums of powers of primes divisibility sequences

MATHEMATICA

k = 0; s = 1; p = 2; A128165 = {}; While[k < 247336000, If[Mod[s += p, ++k] == 0, AppendTo[A128165, k]; Print[{k, p}]]; p = NextPrime@ p]; A128165

PROG

(PARI) is(n)=sum(i=1, n, prime(i), 1)%n==0 \\ Charles R Greathouse IV, Nov 07 2014

(PARI) n=0; s=1; forprime(p=2, 1e9, s+=p; if(s%n++==0, print1(n", "))) \\ Charles R Greathouse IV, Nov 07 2014

CROSSREFS

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.

Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248, A024450, A111441, A217599, A128166, A233862, A217600, A217601.

Sequence in context: A028247 A209535 A065054 * A097646 A077084 A239542

Adjacent sequences:  A128162 A128163 A128164 * A128166 A128167 A128168

KEYWORD

hard,nonn

AUTHOR

Alexander Adamchuk, Feb 22 2007, extended Feb 22 2007

EXTENSIONS

More terms from Ryan Propper, Apr 05 2007

a(34) from Robert G. Wilson v

a(35) from Robert Price, Dec 15 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 06:06 EDT 2019. Contains 324183 sequences. (Running on oeis4.)