login
A233264
Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^12.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 24, 26, 27, 28, 30, 35, 36, 39, 40, 42, 45, 46, 48, 52, 54, 56, 60, 63, 65, 66, 70, 72, 78, 80, 84, 87, 90, 91, 100, 104, 105, 112, 117, 120, 126, 130, 138, 140, 144, 154, 156, 160, 168, 175, 176
OFFSET
1,2
COMMENTS
a(1171) > 2*10^13. - Bruce Garner, Jun 06 2021
LINKS
Bruce Garner, Table of n, a(n) for n = 1..1170 (terms 1..907 from Robert Price, terms 908..967 from Karl-Heinz Hofmann)
EXAMPLE
5 is a term because 1 plus the sum of the first 11 primes^12 is 3152514340085 which is divisible by 11.
MAPLE
A233264:=n->if type((1+add(ithprime(i)^12, i=1..n))/n, integer) then n; fi; seq(A233264(n), n=1..200); # Wesley Ivan Hurt, Dec 06 2013
MATHEMATICA
p = 2; k = 0; s = 1; lst = {}; While[k < 41000000000, s = s + p^12; If[Mod[s, ++k] == 0, AppendTo[lst, k]; Print[{k, p}]]; p = NextPrime@ p] (* derived from A128169 *)
With[{nn=200}, Transpose[Select[Thread[{Accumulate[Prime[Range[nn]]^12], Range[nn]}], Divisible[#[[1]]+1, #[[2]]]&]][[2]]] (* Harvey P. Dale, May 28 2015 *)
CROSSREFS
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
Sequence in context: A245028 A351467 A074402 * A198343 A342382 A094270
KEYWORD
nonn
AUTHOR
Robert Price, Dec 06 2013
STATUS
approved