login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221584
A sum over partitions (q=20), see first comment.
9
1, 19, 399, 7980, 159980, 3199581, 63999600, 1279991601, 25599991620, 511999832020, 10239999832020, 204799996632420, 4095999996640419, 81919999932640800, 1638399999932648400, 32767999998652808799, 655359999998652816380, 13107199999973052976380
OFFSET
0,2
COMMENTS
Set q=20 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products Product_{k=1..L} f(m_k) where L is the number of different parts in the partition P=[p_1^m_1, p_2^m_2, ..., p_L^m_L].
Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)":
q=3: A006952, q=4: A049314, q=5: A049315, q=7: A049316, q=8: A182603,
q=9: A182604, q=11: A182605, q=13: A182606, q=16: A182607, q=17: A182608,
q=19: A182609, q=23: A182610, q=25: A182611, q=27: A182612.
Sequences where q is not a prime power:
q=6: A221578, q=10: A221579, q=12: A221580,
q=14: A221581, q=15: A221582, q=18: A221583, q=20: A221584.
LINKS
PROG
(PARI)
N=66; x='x+O('x^N);
gf=prod(n=1, N, (1-x^n)/(1-20*x^n) );
v=Vec(gf)
CROSSREFS
Sequence in context: A222835 A094737 A009075 * A015694 A099277 A252927
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jan 20 2013
STATUS
approved