This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221584 A sum over partitions (q=20), see first comment. 9
 1, 19, 399, 7980, 159980, 3199581, 63999600, 1279991601, 25599991620, 511999832020, 10239999832020, 204799996632420, 4095999996640419, 81919999932640800, 1638399999932648400, 32767999998652808799, 655359999998652816380, 13107199999973052976380 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Set q=20 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products prod(k=1..L, f(m_k) ) where L is the number of different parts in the partition P=[p_1^m_1, p_2^m_2, ..., p_L^m_L]. Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)": q=3: A006952, q=4: A049314, q=5: A049315, q=7: A049316, q=8: A182603, q=9: A182604, q=11: A182605, q=13: A182606, q=16: A182607, q=17: A182608, q=19: A182609, q=23: A182610, q=25: A182611, q=27: A182612. Sequences where q is not a prime power are: q=6: A221578, q=10: A221579, q=12: A221580, q=14: A221581, q=15: A221582, q=18: A221583, q=20: A221584. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 PROG (PARI) N=66; x='x+O('x^N); gf=prod(n=1, N, (1-x^n)/(1-20*x^n)  ); v=Vec(gf) CROSSREFS Sequence in context: A222835 A094737 A009075 * A015694 A099277 A252927 Adjacent sequences:  A221581 A221582 A221583 * A221585 A221586 A221587 KEYWORD nonn AUTHOR Joerg Arndt, Jan 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 22:24 EDT 2019. Contains 328211 sequences. (Running on oeis4.)