This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221581 A sum over partitions (q=14), see first comment. 9
 1, 13, 195, 2730, 38402, 537615, 7529340, 105410565, 1475786130, 20661005638, 289254613830, 4049564590890, 56693911799265, 793714765148760, 11112006817455180, 155568095444334495, 2177953337695895942, 30491346727741970070, 426878854209048054450 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Set q=14 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products prod(k=1..L, f(m_k) ) where L is the number of different parts in the partition P=[p_1^m_1, p_2^m_2, ..., p_L^m_L]. Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)": q=3: A006952, q=4: A049314, q=5: A049315, q=7: A049316, q=8: A182603, q=9: A182604, q=11: A182605, q=13: A182606, q=16: A182607, q=17: A182608, q=19: A182609, q=23: A182610, q=25: A182611, q=27: A182612. Sequences where q is not a prime power are: q=6: A221578, q=10: A221579, q=12: A221580, q=14: A221581, q=15: A221582, q=18: A221583, q=20: A221584. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..300 MAPLE with(numtheory): b:= proc(n) b(n):= add(phi(d)*14^(n/d), d=divisors(n))/n-1 end: a:= proc(n) a(n):= `if`(n=0, 1,        add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)     end: seq(a(n), n=0..30);  # Alois P. Heinz, Feb 03 2013 MATHEMATICA b[n_] := Sum[EulerPhi[d]*14^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *) PROG (PARI) N=66; x='x+O('x^N); gf=prod(n=1, N, (1-x^n)/(1-14*x^n)  ); v=Vec(gf) CROSSREFS Sequence in context: A159196 A177508 A228659 * A015690 A027773 A099271 Adjacent sequences:  A221578 A221579 A221580 * A221582 A221583 A221584 KEYWORD nonn AUTHOR Joerg Arndt, Jan 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 06:08 EDT 2019. Contains 328106 sequences. (Running on oeis4.)