This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006952 Number of conjugacy classes in GL(n,3). (Formerly M1842) 23
 1, 2, 8, 24, 78, 232, 720, 2152, 6528, 19578, 58944, 176808, 531128, 1593288, 4781952, 14345792, 43043622, 129130584, 387411144, 1162232520, 3486755688, 10460266224, 31380972784, 94142915640, 282429275616, 847287817866, 2541865038832, 7625595108432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field. Duke Math. Journal, 27 (1960) 91-94. I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bulletin of the Australian Mathematical Society, vol.23, no.01, pp.23-48, (February-1981). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). W. D. Smith, personal communication. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..700 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 162 FORMULA G.f. prod(n>=1, (1-x^n)/(1-3*x^n)  ). [Joerg Arndt, Jan 02 2013] The number a(n) of conjugacy classes in the group GL(n, q) is the coefficient of t^n in prod(k>=1, (1-t^k)/(1-q*t^k) ) - Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001. MAPLE with (numtheory): b:= n-> add(phi(d)*3^(n/d), d=divisors(n))/n-1: a:= proc(n) option remember; `if`(n=0, 1,        add (add (d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)     end: seq (a(n), n=0..30);  # Alois P. Heinz, Nov 03 2012 MATHEMATICA b[n_] := Sum[EulerPhi[d]*3^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] =  If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *) PROG (MAGMA) /* The program does not work for n>12: */ [1] cat [NumberOfClasses(GL(n, 3)) : n in [1..12]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006 (PARI) N=66; x='x+O('x^N); gf=prod(n=1, N, (1-x^n)/(1-3*x^n)  ); v=Vec(gf) /* Joerg Arndt, Jan 02 2013 */ CROSSREFS Cf. A006951, A049314, A049315, A049316. Sequence in context: A026070 A093833 A228404 * A034741 A063727 A085449 Adjacent sequences:  A006949 A006950 A006951 * A006953 A006954 A006955 KEYWORD nonn AUTHOR EXTENSIONS More terms from Alois P. Heinz, Nov 03 2012 MAGMA code edited by Vincenzo Librandi, Jan 23 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.