The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228404 The number of complete binary trees with bicolored twigs. A twig is a vertex with one child on the boundary and the other child having no descendants. 1
 1, 2, 8, 24, 76, 249, 836, 2860, 9932, 34918, 124032, 444448, 1604664, 5831765, 21316860, 78319140, 289064460, 1071275370, 3984871440, 14872552560, 55678270440, 209027020410, 786750047304, 2968257334104, 11223268563896, 42522737574604, 161415556062656, 613813414982656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA G.f.: 1 - x + 2*x*C^2 + x*C^4 where C is the g.f. for the Catalan numbers A000108. Conjecture: -5*(n+3)*(n-2)*a(n) +5*(-n^2-n+18)*a(n-1) +5*(-n^2-n+48)*a(n-2) +(-5*n^2+20029*n+720)*a(n-3) +(-5*n^2-104153*n+186654)* a(n-4) +(-5*n^2+130153*n-508806)*a(n-5) +13650*(2*n-11)*(n-7)*a(n-6)=0. - R. J. Mathar, Aug 08 2015 EXAMPLE For n = 2 there are two complete binary trees. Both consist of two twigs so can be colored 4 ways each. PROG (PARI) x = 'x + O('x^66); C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108 gf = 1 - x + 2*x*C^2 + x*C^4; Vec(gf) \\ Joerg Arndt, Aug 22 2013 CROSSREFS Without the bicoloring A228403 is the result. Cf. A000108. Sequence in context: A130495 A026070 A093833 * A006952 A327550 A034741 Adjacent sequences:  A228401 A228402 A228403 * A228405 A228406 A228407 KEYWORD nonn AUTHOR Louis Shapiro, Aug 21 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 04:35 EST 2020. Contains 331183 sequences. (Running on oeis4.)