login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049314 The number k(GL(n,q)) of conjugacy classes in GL(n,q), q=4. 23
1, 3, 15, 60, 252, 1005, 4080, 16305, 65460, 261828, 1048260, 4192980, 16775955, 67103520, 268430160, 1073720415, 4294945932, 17179782540, 68719391100, 274877559420, 1099511281260, 4398045120300, 17592184654365, 70368738597600, 281474971147680 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Bound: k(GL(n,q))<q^n. Asymptotics: k(GL(n,q)~q^n as n tends to infinity.

REFERENCES

W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field. Duke Math. Journal, 27 (1960) 91-94.

V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..500

FORMULA

The number a(n) of conjugacy classes in the group GL(n, q) is the coefficient of t^n in the infinite product: product k=1, 2, ... (1-t^k)/(1-qt^k) - Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001.

MAPLE

with (numtheory):

b:= proc(n) b(n):= add(phi(d)*4^(n/d), d=divisors(n))/n-1 end:

a:= proc(n) a(n):= `if`(n=0, 1,

       add (add (d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)

    end:

seq (a(n), n=0..30);  # Alois P. Heinz, Nov 03 2012

MATHEMATICA

b[n_] := Sum[EulerPhi[d]*4^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-Fran├žois Alcover, Jan 24 2014, after Alois P. Heinz *)

PROG

(MAGMA)/* The program does not work for n>9: */ [1] cat [NumberOfClasses(GL(n, 4)) : n in [1..8]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006

CROSSREFS

Cf. A006951, A006952, A049315, A049316.

Sequence in context: A036750 A286183 A058748 * A001655 A058749 A292483

Adjacent sequences:  A049311 A049312 A049313 * A049315 A049316 A049317

KEYWORD

nonn

AUTHOR

Vladeta Jovovic

EXTENSIONS

MAGMA code edited by Vincenzo Librandi, Jan 23 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 18:46 EST 2017. Contains 294894 sequences.