login
A286183
Number of connected induced (non-null) subgraphs of the antiprism graph with 2n nodes.
16
3, 15, 60, 207, 663, 2038, 6107, 17983, 52272, 150407, 429223, 1216490, 3427635, 9609327, 26821668, 74576703, 206650167, 570877918, 1572754187, 4322192287, 11851474968, 32430381815, 88576465735, 241511251922, 657457204323, 1787147867343, 4851349002252
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Antiprism Graph
Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
FORMULA
a(n) = 8*a(n-1) - 24*a(n-2) + 34*a(n-3) - 24*a(n-4) + 8*a(n-5) - a(n-6), for n > 6 (conjectured).
a(n) = A005248(n) - 2*n + 2*n*A001906(n) (conjectured). - Eric W. Weisstein, May 08 2017
G.f.: x*(3 - 9*x + 12*x^2 - 15*x^3 + 9*x^4 - 2*x^5) / ((1 - x)^2*(1 - 3*x + x^2)^2) (conjectured). - Colin Barker, May 30 2017
MATHEMATICA
a[n_] := Block[{g = Graph@ Flatten@ Table[{i <-> Mod[i, n]+1, n+i <-> Mod[i, n] + n+1, i <-> n + Mod[i, n] + 1, i <-> n + Mod[i-1, n] + 1}, {i, n}]}, -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[2 n]}]]; Array[a, 8]
CROSSREFS
Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).
Sequence in context: A128237 A176311 A036750 * A058748 A049314 A295505
KEYWORD
nonn
AUTHOR
Giovanni Resta, May 04 2017
EXTENSIONS
a(17)-a(27) from Andrew Howroyd, May 20 2017
STATUS
approved