login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049316 The number k(GL(n,q)) of conjugacy classes in GL(n,q), q=7. 23
1, 6, 48, 336, 2394, 16752, 117600, 823152, 5764416, 40350870, 282472512, 1977307248, 13841268048, 96888873648, 678222936384, 4747560552384, 33232929612330, 232630507267536, 1628413591207536, 11398895138319024, 79792266250574640, 558545863753891104 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field. Duke Math. Journal, 27 (1960) 91-94.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

The number a(n) of conjugacy classes in the group GL(n, q) is the coefficient of t^n in the infinite product: product k=1, 2, ... (1-t^k)/(1-qt^k) - Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001.

MAPLE

with(numtheory):

b:= proc(n) b(n):= add(phi(d)*7^(n/d), d=divisors(n))/n-1 end:

a:= proc(n) a(n):= `if`(n=0, 1,

       add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)

    end:

seq(a(n), n=0..30);  # Alois P. Heinz, Nov 03 2012

MATHEMATICA

b[n_] := Sum[EulerPhi[d]*7^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-Fran├žois Alcover, Jan 24 2014, after Alois P. Heinz *)

PROG

(MAGMA) /* The program does not work for n>8: */ [1] cat [NumberOfClasses(GL(n, 7)): n in [1..8]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006

CROSSREFS

Cf. A006951, A006952, A049314, A049315.

Sequence in context: A073994 A165758 A166152 * A024075 A052571 A052625

Adjacent sequences:  A049313 A049314 A049315 * A049317 A049318 A049319

KEYWORD

nonn

AUTHOR

Vladeta Jovovic

EXTENSIONS

MAGMA code edited by Vincenzo Librandi, Jan 23 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 17:56 EST 2017. Contains 294894 sequences.