login
A218733
a(n) = (30^n - 1)/29.
6
0, 1, 31, 931, 27931, 837931, 25137931, 754137931, 22624137931, 678724137931, 20361724137931, 610851724137931, 18325551724137931, 549766551724137931, 16492996551724137931, 494789896551724137931, 14843696896551724137931, 445310906896551724137931, 13359327206896551724137931
OFFSET
0,3
COMMENTS
Partial sums of powers of 30 (A009974).
FORMULA
a(n) = floor(30^n/29).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-30*x)).
a(n) = 31*a(n-1) - 30*a(n-2). (End)
E.g.f.: exp(x)*(exp(29*x) - 1)/29. - Elmo R. Oliveira, Aug 29 2024
MATHEMATICA
LinearRecurrence[{31, -30}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(30^Range[0, 20]-1)/29 (* Harvey P. Dale, Nov 22 2022 *)
PROG
(PARI) A218733(n)=30^n\29
(Maxima) A218733(n):=floor((30^n-1)/29)$ makelist(A218733(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Magma) [n le 2 select n-1 else 31*Self(n-1) - 30*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Nov 04 2012
STATUS
approved