login
A170712
Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.
1
1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339100000000, 610173000000000, 18305190000000000, 549155700000000000, 16474671000000000000, 494240130000000000000, 14827203900000000000000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 465. - Vincenzo Librandi, Dec 06 2012
LINKS
Index entries for linear recurrences with constant coefficients, signature (29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, -435).
FORMULA
G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(435*t^50 - 29*t^49 - 29*t^48 - 29*t^47 - 29*t^46 - 29*t^45 -
29*t^44 - 29*t^43 - 29*t^42 - 29*t^41 - 29*t^40 - 29*t^39 - 29*t^38 -
29*t^37 - 29*t^36 - 29*t^35 - 29*t^34 - 29*t^33 - 29*t^32 - 29*t^31 -
29*t^30 - 29*t^29 - 29*t^28 - 29*t^27 - 29*t^26 - 29*t^25 - 29*t^24 -
29*t^23 - 29*t^22 - 29*t^21 - 29*t^20 - 29*t^19 - 29*t^18 - 29*t^17 -
29*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 -
29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 -
29*t + 1).
MATHEMATICA
With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-29 t^Range[49]] + 435 t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Vincenzo Librandi, Dec 06 2012 *)
coxG[{50, 435, -29}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 29 2020 *)
CROSSREFS
Sequence in context: A170568 A170616 A170664 * A170750 A218733 A084330
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved