login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091030 Partial sums of powers of 13 (A001022). 40
1, 14, 183, 2380, 30941, 402234, 5229043, 67977560, 883708281, 11488207654, 149346699503, 1941507093540, 25239592216021, 328114698808274, 4265491084507563, 55451384098598320, 720867993281778161 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

13^a(n) is highest power of 13 dividing (13^n)!.

For analogs with primes 2, 3, 5, 7 and 11 see A000225, A003462, A003463, A023000 and A016123 respectively.

Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1,A[i,i]:=13, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=14, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^(n)*charpoly(A,1). - Milan Janjic, Feb 21 2010

LINKS

Table of n, a(n) for n=1..17.

Index entries for linear recurrences with constant coefficients, signature (14,-13).

FORMULA

G.f.: x/((1-13*x)*(1-x)) = (1/(1-13*x) - 1/(1-x))/12.

a(n)= Sum_{k=0..n-1} 13^k = (13^n-1)/12.

a(n) = 13*a(n-1)+1 for n>1, a(1)=1. - Vincenzo Librandi, Feb 05 2011

a(n) = Sum_{k=0...n-1} 12^k*binomial(n,n-1-k). [Bruno Berselli, Nov 12 2015]

EXAMPLE

For n=6, a(6) = 1*6 + 12*15 + 144*20 + 1728*15 + 20736*6 + 248832*1 = 402234. [Bruno Berselli, Nov 12 2015]

MAPLE

a:=n->sum(13^(n-j), j=1..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 04 2007

MATHEMATICA

Table[13^n, {n, 0, 16}] // Accumulate (* Jean-Fran├žois Alcover, Jul 05 2013 *)

PROG

(Sage) [gaussian_binomial(n, 1, 13) for n in xrange(1, 18)] # - Zerinvary Lajos, May 28 2009

(Sage) [(13^n-1)/12 for n in (1..30)] # Bruno Berselli, Nov 12 2015

(Maxima) A091030(n):=(13^n-1)/12$ makelist(A091030(n), n, 1, 30); /* Martin Ettl, Nov 05 2012 */

(PARI) a(n)=([0, 1; -13, 14]^(n-1)*[1; 14])[1, 1] \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A000225, A003462, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125.

Cf. A001021, A135278.

Sequence in context: A170733 A186229 A181237 * A179090 A165152 A263384

Adjacent sequences:  A091027 A091028 A091029 * A091031 A091032 A091033

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Jan 23 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 22 12:24 EDT 2017. Contains 288613 sequences.