The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091030 Partial sums of powers of 13 (A001022). 42
 1, 14, 183, 2380, 30941, 402234, 5229043, 67977560, 883708281, 11488207654, 149346699503, 1941507093540, 25239592216021, 328114698808274, 4265491084507563, 55451384098598320, 720867993281778161 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS 13^a(n) is highest power of 13 dividing (13^n)!. For analogs with primes 2, 3, 5, 7 and 11 see A000225, A003462, A003463, A023000 and A016123 respectively. Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1,A[i,i]:=13, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=14, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^(n)*charpoly(A,1). - Milan Janjic, Feb 21 2010 LINKS Index entries for linear recurrences with constant coefficients, signature (14,-13). FORMULA G.f.: x/((1-13*x)*(1-x)) = (1/(1-13*x) - 1/(1-x))/12. a(n)= Sum_{k=0..n-1} 13^k = (13^n-1)/12. a(n) = 13*a(n-1)+1 for n>1, a(1)=1. - Vincenzo Librandi, Feb 05 2011 a(n) = Sum_{k=0...n-1} 12^k*binomial(n,n-1-k). [Bruno Berselli, Nov 12 2015] EXAMPLE For n=6, a(6) = 1*6 + 12*15 + 144*20 + 1728*15 + 20736*6 + 248832*1 = 402234. [Bruno Berselli, Nov 12 2015] MAPLE a:=n->sum(13^(n-j), j=1..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 04 2007 MATHEMATICA Table[13^n, {n, 0, 16}] // Accumulate (* Jean-François Alcover, Jul 05 2013 *) PROG (Sage) [gaussian_binomial(n, 1, 13) for n in range(1, 18)] # - Zerinvary Lajos, May 28 2009 (Sage) [(13^n-1)/12 for n in (1..30)] # Bruno Berselli, Nov 12 2015 (Maxima) A091030(n):=(13^n-1)/12\$ makelist(A091030(n), n, 1, 30); /* Martin Ettl, Nov 05 2012 */ (PARI) a(n)=([0, 1; -13, 14]^(n-1)*[1; 14])[1, 1] \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A000225, A003462, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125. Cf. A001021, A135278. Sequence in context: A170733 A186229 A181237 * A179090 A165152 A263384 Adjacent sequences:  A091027 A091028 A091029 * A091031 A091032 A091033 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jan 23 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 7 05:20 EDT 2020. Contains 334837 sequences. (Running on oeis4.)