login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A207607 Triangle of coefficients of polynomials v(n,x) jointly generated with A207606; see Formula section. 3
1, 1, 2, 1, 5, 2, 1, 9, 9, 2, 1, 14, 25, 13, 2, 1, 20, 55, 49, 17, 2, 1, 27, 105, 140, 81, 21, 2, 1, 35, 182, 336, 285, 121, 25, 2, 1, 44, 294, 714, 825, 506, 169, 29, 2, 1, 54, 450, 1386, 2079, 1716, 819, 225, 33, 2, 1, 65, 660, 2508, 4719, 5005, 3185, 1240, 289, 37, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Subtriangle of the triangle T(n,k) given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012

LINKS

Table of n, a(n) for n=1..66.

FORMULA

u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = x*u(n-1,x) + (x+1)v(n-1,x), where u(1,x)=1, v(1,x)=1.

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Mar 03 2012

G.f.: (1-x+y*x)/(1-(y+2)*x+x^2). - Philippe Deléham, Mar 03 2012

For n >= 1, Sum{k=0..n} T(n,k)*x^k = A000012(n), A001906(n), A001834(n-1), A055271(n-1), A038761(n-1), A056914(n-1) for x = 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Mar 03 2012

T(n,k) = C(n+k-1,2*k) + 2*C(n+k-1,2*k-1). where C is binomial. - Yuchun Ji, May 23 2019

T(n,k) = T(n-1,k) + A207606(n,k-1). - Yuchun Ji, May 28 2019

EXAMPLE

First five rows:

  1;

  1,  2;

  1,  5,  2;

  1,  9,  9,  2;

  1, 14, 25, 13,  2;

Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, ...) begins:

  1;

  1,  0;

  1,  2,  0;

  1,  5,  2,  0;

  1,  9,  9,  2,  0;

  1, 14, 25, 13,  2,  0;

  1, 20, 55, 49, 17,  2,  0;

  ...

1 = 2*1 - 1, 20 = 2*14 + 1 - 9, 55 = 2*25 + 14 - 9, 49 = 2*13 + 25 - 2, 17 = 2*2 + 1 - 0, 2 = 2*0 + 2 - 0. - Philippe Deléham, Mar 03 2012

MATHEMATICA

u[1, x_] := 1; v[1, x_] := 1; z = 16;

u[n_, x_] := u[n - 1, x] + v[n - 1, x]

v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]

Table[Factor[u[n, x]], {n, 1, z}]

Table[Factor[v[n, x]], {n, 1, z}]

cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

TableForm[cu]

Flatten[%]  (* A207606 *)

Table[Expand[v[n, x]], {n, 1, z}]

cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

TableForm[cv]

Flatten[%]  (* A207607 *)

PROG

(Python)

from sympy import Poly

def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)

def v(n, x): return 1 if n==1 else x*u(n - 1, x) + (x + 1)*v(n - 1, x)

def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]

for n in xrange(1, 13): print a(n) # Indranil Ghosh, May 28 2017

CROSSREFS

Cf. A207606.

Sequence in context: A259447 A228823 A249756 * A146024 A146023 A104766

Adjacent sequences:  A207604 A207605 A207606 * A207608 A207609 A207610

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Feb 19 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 22:05 EDT 2019. Contains 328291 sequences. (Running on oeis4.)