login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056914 a(n) = L(4n+1) where L() are the Lucas numbers. 7
1, 11, 76, 521, 3571, 24476, 167761, 1149851, 7881196, 54018521, 370248451, 2537720636, 17393796001, 119218851371, 817138163596, 5600748293801, 38388099893011, 263115950957276, 1803423556807921, 12360848946698171 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, A Publication of the Fibonacci Association, Houghton Mifflin Co., 1969, pps. 27-29.

LINKS

Table of n, a(n) for n=0..19.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (7,-1)

FORMULA

a(n) = 7a(n-1) - a(n-2); a(0)=1, a(1)=11.

G.f.: (1-4*x)/(1-7*x+x^2). - Philippe Deléham, Nov 02 2008

EXAMPLE

a(n)={11*[((7+3*sqrt(5))/2)^n - ((7-3*sqrt(5))/2)^n]-[((7+3*sqrt(5))/2)^(n-1) - ((7-3*sqrt(5))/2)^(n-1)]}/3*sqrt(5).

CROSSREFS

Cf. (A056914)=sqrt{5*(A033889)^2-4}.

Cf. quadrisection of A000032: A056854 (first), this sequence (second), A246453 (third, without 11), A288913 (fourth).

Sequence in context: A034269 A256597 A245561 * A232032 A272395 A039674

Adjacent sequences:  A056911 A056912 A056913 * A056915 A056916 A056917

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, Jul 11 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 12:21 EST 2017. Contains 294891 sequences.