This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056914 a(n) = L(4n+1) where L() are the Lucas numbers. 7
 1, 11, 76, 521, 3571, 24476, 167761, 1149851, 7881196, 54018521, 370248451, 2537720636, 17393796001, 119218851371, 817138163596, 5600748293801, 38388099893011, 263115950957276, 1803423556807921, 12360848946698171 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, A Publication of the Fibonacci Association, Houghton Mifflin Co., 1969, pps. 27-29. LINKS Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (7,-1) FORMULA a(n) = 7a(n-1) - a(n-2); a(0)=1, a(1)=11. G.f.: (1-4*x)/(1-7*x+x^2). - Philippe Deléham, Nov 02 2008 EXAMPLE a(n)={11*[((7+3*sqrt(5))/2)^n - ((7-3*sqrt(5))/2)^n]-[((7+3*sqrt(5))/2)^(n-1) - ((7-3*sqrt(5))/2)^(n-1)]}/3*sqrt(5). CROSSREFS Cf. (A056914)=sqrt{5*(A033889)^2-4}. Cf. quadrisection of A000032: A056854 (first), this sequence (second), A246453 (third, without 11), A288913 (fourth). Sequence in context: A034269 A256597 A245561 * A232032 A272395 A039674 Adjacent sequences:  A056911 A056912 A056913 * A056915 A056916 A056917 KEYWORD easy,nonn AUTHOR Barry E. Williams, Jul 11 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.