login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A207605 Triangle of coefficients of polynomials u(n,x) jointly generated with A106195; see the Formula section. 3
1, 2, 4, 1, 8, 4, 1, 16, 12, 5, 1, 32, 32, 18, 6, 1, 64, 80, 56, 25, 7, 1, 128, 192, 160, 88, 33, 8, 1, 256, 448, 432, 280, 129, 42, 9, 1, 512, 1024, 1120, 832, 450, 180, 52, 10, 1, 1024, 2304, 2816, 2352, 1452, 681, 242, 63, 11, 1, 2048, 5120, 6912, 6400, 4424, 2364, 985, 316, 75, 12, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Row sums: 1,2,5,13,... (odd-indexed Fibonacci numbers).

Alternating row sums: 1,2,3,5,... (Fibonacci numbers).

Subtriangle of the triangle given by (1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 22 2012

LINKS

G. C. Greubel, Rows n = 1..102 of the triangle, flattened

FORMULA

u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = u(n-1,x) + (x+1)v(n-1,x), where u(1,x)=1, v(1,x)=1.

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(1,0) = 1, T(2,0) = 2, T(2,1) = 0. - Philippe Deléham, Mar 22 2012

G.f.: x*y*(1-x*y)/(1-x*y-2*x+x^2*y). - R. J. Mathar, Aug 11 2015

T(n,k) = [x^k] Sum_{k=0..n} binomial(n, k)*hypergeom([-k, n-k], [-n], x). - Peter Luschny, Feb 16 2018

Sum_{k=1..n} T(n,k) = Fibonacci(2*n-1), n >= 1, = (-1)^(n-1)*A099496(n-1). - G. C. Greubel, Mar 15 2020

EXAMPLE

First five rows:

   1

   2

   4   1

   8   4   1

  16  12   5   1

  32  32  18   6   1

First four polynomials u(n,x): 1, 2, 4 + x, 8 + 4x + x^2.

(1, 1, 0, 0, 0, ...) DELTA (0, 0, 1, 0, 0, ...) begins:

   1

   1,  0

   2,  0,  0

   4,  1,  0,  0

   8,  4,  1,  0,  0

  16, 12,  5,  1,  0,  0

  32, 32, 18,  6,  1,  0,  0. - Philippe Deléham, Mar 22 2012

MAPLE

CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):

T := (n, k) -> binomial(n, k)*hypergeom([-k, n-k], [-n], x):

P := [seq(add(simplify(T(n, k)), k=0..n), n=0..11)]:

seq(CoeffList(p), p in P); # Peter Luschny, Feb 16 2018

MATHEMATICA

(* First program *)

u[1, x_] := 1; v[1, x_] := 1; z = 16;

u[n_, x_] := u[n - 1, x] + v[n - 1, x]

v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x]

Table[Factor[u[n, x]], {n, 1, z}]

Table[Factor[v[n, x]], {n, 1, z}]

cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

TableForm[cu]

Flatten[%]  (* A207605 *)

Table[Expand[v[n, x]], {n, 1, z}]

cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

TableForm[cv]

Flatten[%]  (* A106195 *)

(* Second program *)

T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 2^(n+1), If[k==n, 1, 2*T[n-1, k] + T[n-1, k-1] - T[n-2, k-1] ]]]; Join[{1}, Table[T[n, k], {n, 0, 10}, {k, 0, n}]]//Flatten (* G. C. Greubel, Mar 15 2020 *)

PROG

(Python)

from sympy import Poly

from sympy.abc import x

def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)

def v(n, x): return 1 if n==1 else u(n - 1, x) + (x + 1)*v(n - 1, x)

def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]

for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017

(Sage)

@CachedFunction

def T(n, k):

    if (k<0 or k>n): return 0

    elif k == 0: return 2^(n+1)

    elif k == n: return 1

    else: return 2*T(n-1, k) + T(n-1, k-1) - T(n-2, k-1)

[1]+[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 15 2020

CROSSREFS

Cf. A001519, A106195.

Sequence in context: A275486 A065278 A182896 * A112931 A121685 A125810

Adjacent sequences:  A207602 A207603 A207604 * A207606 A207607 A207608

KEYWORD

nonn,tabf

AUTHOR

Clark Kimberling, Feb 19 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 02:22 EDT 2020. Contains 337175 sequences. (Running on oeis4.)