This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200338 Decimal expansion of least x>0 satisfying x^2+1=tan(x). 159
 1, 1, 7, 2, 0, 9, 3, 6, 1, 7, 2, 8, 5, 6, 6, 9, 0, 3, 9, 6, 8, 7, 8, 1, 8, 7, 9, 5, 8, 1, 0, 8, 9, 8, 8, 0, 4, 0, 2, 4, 2, 4, 5, 7, 0, 8, 8, 0, 2, 7, 6, 3, 7, 1, 7, 6, 0, 1, 8, 6, 6, 3, 6, 7, 1, 2, 1, 8, 6, 6, 3, 4, 6, 0, 7, 6, 4, 1, 2, 2, 8, 3, 6, 5, 4, 5, 6, 1, 1, 2, 2, 8, 6, 7, 2, 3, 0, 3, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS For many choices of a,b,c, there is exactly one x satisfying a*x^2+b*x+c=tan(x) and 0 {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] RealDigits[r]  (* A200338 *) (* Program 2: implicit surface of x^2+u*x+v=tan(x) *) f[{x_, u_, v_}] := x^2 + u*x + v - Tan[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.57}]}, {u, 0, 5, .1}, {v, 0, 5, .1}]; ListPlot3D[Flatten[t, 1]]  (* for A200388 *) CROSSREFS Cf. A197737, A198414, A198755, A198866, A199170, A199370, A199429, A199597, A199949. Sequence in context: A093954 A177703 A266814 * A153589 A010505 A020844 Adjacent sequences:  A200335 A200336 A200337 * A200339 A200340 A200341 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 20:04 EDT 2019. Contains 328037 sequences. (Running on oeis4.)