This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199949 Decimal expansion of least x satisfying x^2 + cos(x) = 2*sin(x). 137
 6, 5, 9, 2, 6, 6, 0, 4, 5, 7, 6, 6, 9, 4, 6, 0, 7, 4, 5, 3, 7, 3, 4, 8, 5, 7, 9, 5, 6, 3, 0, 6, 7, 6, 1, 1, 6, 1, 5, 3, 2, 8, 0, 2, 1, 6, 4, 4, 5, 1, 6, 7, 9, 7, 3, 6, 0, 9, 4, 5, 1, 3, 0, 3, 1, 4, 1, 0, 7, 3, 6, 4, 4, 5, 5, 8, 7, 4, 2, 6, 6, 2, 4, 4, 0, 7, 1, 9, 5, 1, 9, 3, 1, 6, 4, 1, 4, 4, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For many choices of a,b,c, there are exactly two numbers x>0 satisfying a*x^2+b*cos(x)=c*sin(x). Guide to related sequences, with graphs included in Mathematica programs: a.... b.... c.... least x, greatest x 1.... 1.... 2.... A199949, A199950 1.... 1.... 3.... A199951, A199952 1.... 1.... 4.... A199953, A199954 1.... 2.... 3.... A199955, A199956 1.... 2.... 4.... A199957, A199958 1.... 3.... 3.... A199959, A199960 1.... 3.... 4.... A199961, A199962 1.... 4.... 3.... A199963, A199964 1.... 4.... 4.... A199965, A199966 2.... 1.... 3.... A199967, A200003 2.... 1.... 4.... A200004, A200005 3.... 1.... 4.... A200006, A200007 4.... 1.... 4.... A200008, A200009 1... -1.... 1.... A200010, A200011 1... -1.... 2.... A200012, A200013 1... -1.... 3.... A200014, A200015 1... -1.... 4.... A200016, A200017 1... -2.... 1.... A200018, A200019 1... -2.... 2.... A200020, A200021 1... -2.... 3.... A200022, A200023 1... -2.... 4.... A200024, A200025 1... -3.... 1.... A200026, A200027 1... -3.... 2.... A200093, A200094 1... -3.... 3.... A200095, A200096 1... -3.... 4.... A200097, A200098 1... -4.... 1.... A200099, A200100 1... -4.... 2.... A200101, A200102 1... -4.... 3.... A200103, A200104 1... -4.... 4.... A200105, A200106 2... -1.... 1.... A200107, A200108 2... -1.... 2.... A200109, A200110 2... -1.... 3.... A200111, A200112 2... -1.... 4.... A200114, A200115 2... -2.... 1.... A200116, A200117 2... -2.... 3.... A200118, A200119 2... -3.... 1.... A200120, A200121 2... -3.... 2.... A200122, A200123 2... -3.... 3.... A200124, A200125 2... -3.... 4.... A200126, A200127 2... -4.... 1.... A200128, A200129 2... -4.... 3.... A200130, A200131 3... -1.... 1.... A200132, A200133 3... -1.... 2.... A200223, A200224 3... -1.... 3.... A200225, A200226 3... -1.... 4.... A200227, A200228 3... -2.... 1.... A200229, A200230 3... -2.... 2.... A200231, A200232 3... -2.... 3.... A200233, A200234 3... -2.... 4.... A200235, A200236 3... -3.... 1.... A200237, A200238 3... -3.... 2.... A200239, A200240 3... -3.... 4.... A200241, A200242 3... -4.... 1.... A200277, A200278 3... -4.... 2.... A200279, A200280 3... -4.... 3.... A200281, A200282 3... -4.... 4.... A200283, A200284 4... -1.... 1.... A200285, A200286 4... -1.... 2.... A200287, A200288 4... -1.... 3.... A200289, A200290 4... -1.... 4.... A200291, A200292 4... -2.... 1.... A200293, A200294 4... -2.... 3.... A200295, A200296 4... -3.... 1.... A200299, A200300 4... -3.... 2.... A200297, A200298 4... -3.... 3.... A200301, A200302 4... -3.... 4.... A200303, A200304 4... -4.... 1.... A200305, A200306 4... -4.... 3.... A200307, A200308 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0.  We call the graph of z=g(u,v) an implicit surface of f. For an example related to A199949, take f(x,u,v)=x^2+u*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0.  If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous.  A portion of an implicit surface is plotted by Program 2 in the Mathematica section. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 EXAMPLE least x:  0.659266045766946074537348579563067611... greatest x: 1.2710268008159460640047188480978502... MATHEMATICA (* Program 1:  A199949 *) a = 1; b = 1; c = 2; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .65, .66}, WorkingPrecision -> 110] RealDigits[r]   (* A199949 *) r = x /. FindRoot[f[x] == g[x], {x, 1.27, 1.28}, WorkingPrecision -> 110] RealDigits[r]   (* A199950 *) (* Program 2: implicit surface of x^2+u*cos(x)=v*sin(x) *) f[{x_, u_, v_}] := x^2 + u*Cos[x] - v*Sin[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, -5, 0}, {v, 0, 1}]; ListPlot3D[Flatten[t, 1]]  (* for A199949 *) PROG (PARI) a=1; b=1; c=2; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018 CROSSREFS Cf. A199950. Sequence in context: A275110 A011284 A196760 * A165227 A242761 A200477 Adjacent sequences:  A199946 A199947 A199948 * A199950 A199951 A199952 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 12 2011 EXTENSIONS A-number corrected by Jaroslav Krizek, Nov 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 26 02:19 EDT 2019. Contains 326324 sequences. (Running on oeis4.)