login
A200353
Decimal expansion of least x > 0 satisfying x^2 + 3*x + 4 = tan(x).
2
1, 4, 7, 6, 8, 3, 6, 9, 4, 2, 0, 3, 5, 6, 2, 9, 5, 9, 6, 6, 0, 0, 2, 2, 5, 3, 3, 2, 4, 9, 9, 6, 8, 5, 6, 6, 4, 3, 5, 6, 7, 9, 0, 2, 8, 3, 6, 1, 0, 4, 8, 0, 7, 3, 0, 9, 4, 9, 8, 8, 6, 3, 5, 6, 4, 4, 5, 2, 4, 3, 6, 7, 8, 9, 5, 0, 5, 0, 9, 7, 7, 6, 6, 8, 3, 9, 3, 5, 1, 8, 0, 0, 6, 7, 4, 2, 8, 5, 4
OFFSET
1,2
COMMENTS
See A200338 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
1.4768369420356295966002253324996856643...
MATHEMATICA
a = 1; b = 3; c = 4;
f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
RealDigits[r] (* A200353 *)
PROG
(PARI) solve(x=1, 3/2, x^2 + 3*x + 4 - tan(x)) \\ Michel Marcus, Aug 05 2018
CROSSREFS
Cf. A200338.
Sequence in context: A199550 A292510 A284116 * A081845 A254339 A140877
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 17 2011
EXTENSIONS
Terms a(90) onward corrected by G. C. Greubel, Aug 04 2018
STATUS
approved