This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198866 Decimal expansion of x < 0 satisfying x^2 + sin(x) = 1. 57
 1, 4, 0, 9, 6, 2, 4, 0, 0, 4, 0, 0, 2, 5, 9, 6, 2, 4, 9, 2, 3, 5, 5, 9, 3, 9, 7, 0, 5, 8, 9, 4, 9, 3, 5, 4, 7, 1, 2, 3, 5, 4, 8, 3, 5, 1, 0, 7, 8, 9, 0, 1, 5, 1, 5, 1, 0, 1, 6, 6, 8, 3, 0, 0, 9, 9, 1, 8, 3, 6, 0, 1, 6, 7, 3, 1, 8, 1, 4, 5, 2, 5, 1, 6, 8, 7, 4, 8, 9, 2, 1, 4, 3, 2, 5, 9, 0, 7, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For many choices of a,b,c, there are exactly two numbers x having a*x^2 + b*sin(x) = c. Guide to related sequences, with graphs included in Mathematica programs: a.... b.... c.... x 1.... 1.... 1.... A124597 1.... 1.... 1.... A198866, A198867 1.... 1.... 2.... A199046, A199047 1.... 1.... 3.... A199048, A199049 1.... 2.... 0.... A198414 1.... 2.... 1.... A199080, A199081 1.... 2.... 2.... A199082, A199083 1.... 2.... 3.... A199050, A199051 1.... 3.... 0.... A198415 1.... 3... -1.... A199052, A199053 1.... 3.... 1.... A199054, A199055 1.... 3.... 2.... A199056, A199057 1.... 3.... 3.... A199058, A199059 2.... 1.... 0.... A198583 2.... 1.... 1.... A199061, A199062 2.... 1.... 2.... A199063, A199064 2.... 1.... 3.... A199065, A199066 2.... 2.... 1.... A199067, A199068 2.... 2.... 3.... A199069, A199070 2.... 3.... 0.... A198605 2.... 3.... 1.... A199071, A199072 2.... 3.... 2.... A199073, A199074 2.... 3.... 3.... A199075, A199076 3.... 0.... 1.... A020760 3.... 1.... 1.... A199060, A199077 3.... 1.... 2.... A199078, A199079 3.... 1.... 3.... A199150, A199151 3.... 2.... 1.... A199152, A199153 3.... 2.... 2.... A199154, A199155 3.... 2.... 3.... A199156, A199157 3.... 3.... 1.... A199158, A199159 3.... 3.... 2.... A199160, A199161 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v), u, v) = 0. We call the graph of z=g(u,v) an implicit surface of f. For an example related to A198866, take f(x,u,v) = x^2 + u*sin(x) - v and g(u,v) = a nonzero solution x of f(x,u,v)=0.  If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous.  A portion of an implicit surface is plotted by Program 2 in the Mathematica section. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE negative: -1.40962400400259624923559397058949354... positive:  0.63673265080528201088799090383828005... MATHEMATICA (* Program 1: this sequence and A198867 *) a = 1; b = 1; c = 1; f[x_] := a*x^2 + b*Sin[x]; g[x_] := c Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.41, -1.40}, WorkingPrecision -> 110] RealDigits[r] (* this sequence *) r = x /. FindRoot[f[x] == g[x], {x, .63, .64}, WorkingPrecision -> 110] RealDigits[r] (* A198867 *) (* Program 2: implicit surface of x^2+u*sin(x)=v *) f[{x_, u_, v_}] := x^2 + u*Sin[x] - v; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 6}, {v, u, 12}]; ListPlot3D[Flatten[t, 1]]  (* for this sequence *) PROG (PARI) a=1; b=1; c=1; solve(x=-2, 0, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019 (Sage) a=1; b=1; c=1; (a*x^2 + b*sin(x)==c).find_root(-2, 0, x) # G. C. Greubel, Feb 20 2019 CROSSREFS Cf. A198867, A198755, A198414, A197737. Sequence in context: A215499 A190262 A187586 * A269720 A245638 A176220 Adjacent sequences:  A198863 A198864 A198865 * A198867 A198868 A198869 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 20:24 EDT 2019. Contains 325056 sequences. (Running on oeis4.)