OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 15, ... and the same line from 0, in the direction 0, 45, ..., in the square spiral whose vertices are the generalized 17-gonal numbers.
Sum of the numbers from 7*n to 8*n. - Wesley Ivan Hurt, Dec 23 2015
Also the number of 4-cycles in the (n+6)-triangular honeycomb obtuse knight graph. - Eric W. Weisstein, Jul 28 2017
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
Eric Weisstein's World of Mathematics, Graph Cycle.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From Wesley Ivan Hurt, Dec 23 2015: (Start)
G.f.: 15*x/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = Sum_{i=7*n..8*n} i. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/15.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/15.
Product_{n>=1} (1 - 1/a(n)) = -(15/(2*Pi))*cos(sqrt(23/15)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (15/(2*Pi))*cos(sqrt(7/15)*Pi/2). (End)
E.g.f.: 15*exp(x)*x*(2 + x)/2. - Elmo R. Oliveira, Dec 25 2024
MAPLE
MATHEMATICA
15*Accumulate[Range[0, 60]] (* Harvey P. Dale, Feb 12 2012 *)
Table[15 n (n + 1)/2, {n, 0, 60}] (* Wesley Ivan Hurt, Dec 23 2015 *)
15 Binomial[Range[20], 2] (* Eric W. Weisstein, Jul 28 2017 *)
15 PolygonalNumber[Range[0, 20]] (* Eric W. Weisstein, Jul 28 2017 *)
PROG
(Magma) [15*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Oct 04 2011
(PARI) a(n)=15*n*(n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. A001105 (3-cycles in the triangular honeycomb obtuse knight graph), A290391 (5-cycles), A290392 (6-cycles). - Eric W. Weisstein, Jul 29 2017
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Oct 03 2011
STATUS
approved