login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194715
15 times triangular numbers.
7
0, 15, 45, 90, 150, 225, 315, 420, 540, 675, 825, 990, 1170, 1365, 1575, 1800, 2040, 2295, 2565, 2850, 3150, 3465, 3795, 4140, 4500, 4875, 5265, 5670, 6090, 6525, 6975, 7440, 7920, 8415, 8925, 9450, 9990, 10545, 11115, 11700, 12300, 12915, 13545, 14190, 14850, 15525
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 15, ... and the same line from 0, in the direction 0, 45, ..., in the square spiral whose vertices are the generalized 17-gonal numbers.
Sum of the numbers from 7*n to 8*n. - Wesley Ivan Hurt, Dec 23 2015
Also the number of 4-cycles in the (n+6)-triangular honeycomb obtuse knight graph. - Eric W. Weisstein, Jul 28 2017
LINKS
M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
Eric Weisstein's World of Mathematics, Graph Cycle.
FORMULA
a(n) = 15*n*(n+1)/2 = 15*A000217(n) = 5*A045943(n) = 3*A028895(n) = A069128(n+1) - 1.
From Wesley Ivan Hurt, Dec 23 2015: (Start)
G.f.: 15*x/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = Sum_{i=7*n..8*n} i. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/15.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/15.
Product_{n>=1} (1 - 1/a(n)) = -(15/(2*Pi))*cos(sqrt(23/15)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (15/(2*Pi))*cos(sqrt(7/15)*Pi/2). (End)
E.g.f.: 15*exp(x)*x*(2 + x)/2. - Elmo R. Oliveira, Dec 25 2024
MAPLE
A194715:=n->15*n*(n+1)/2: seq(A194715(n), n=0..60); # Wesley Ivan Hurt, Dec 23 2015
MATHEMATICA
15*Accumulate[Range[0, 60]] (* Harvey P. Dale, Feb 12 2012 *)
Table[15 n (n + 1)/2, {n, 0, 60}] (* Wesley Ivan Hurt, Dec 23 2015 *)
15 Binomial[Range[20], 2] (* Eric W. Weisstein, Jul 28 2017 *)
15 PolygonalNumber[Range[0, 20]] (* Eric W. Weisstein, Jul 28 2017 *)
PROG
(Magma) [15*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Oct 04 2011
(PARI) a(n)=15*n*(n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. A001105 (3-cycles in the triangular honeycomb obtuse knight graph), A290391 (5-cycles), A290392 (6-cycles). - Eric W. Weisstein, Jul 29 2017
Sequence in context: A066763 A164788 A033849 * A060536 A014634 A303857
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Oct 03 2011
STATUS
approved