This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035008 Total number of possible knight moves on an (n+2) X (n+2) chessboard, if the knight is placed anywhere. 36
 0, 16, 48, 96, 160, 240, 336, 448, 576, 720, 880, 1056, 1248, 1456, 1680, 1920, 2176, 2448, 2736, 3040, 3360, 3696, 4048, 4416, 4800, 5200, 5616, 6048, 6496, 6960, 7440, 7936, 8448, 8976, 9520, 10080, 10656, 11248, 11856, 12480, 13120, 13776 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS 16 times the triangular numbers A000217. Centered 16-gonal numbers A069129, minus 1. Also, sequence found by reading the segment (0, 16) together with the line from 16, in the direction 16, 48,..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Apr 26 2008, Nov 20 2008 For n>=1, number of permutations of n+1 objects selected from 5 objects v, w, x, y, z with repetition allowed, containing n-1 v's. Examples: at n=1, n-1=0 (i.e., zero v's), and a(1)=16 because we have ww, wx, wy, wz, xw, xx, xy, xz, yw, yx, yy, yz, zw, zx, zy, zz; at n=2, n-1=1 (i.e., one v), and there are 3 permutations corresponding to each one in the n=1 case (e.g., the single v can be inserted in any of three places in the 2-object permutation xy, yielding vxy, xvy, and xyv), so a(2) = 3*a(1) = 3*16 =48; at n=3, n-1=2 (i.e., two v's), and a(3) = C(4,2)*a(1) = 6*16 = 96; etc. - Zerinvary Lajos, Aug 07 2008 (this needs clarification, Joerg Arndt, Feb 23 2014) Sequence found by reading the line from 0, in the direction 0, 16, ... and the same line from 0, in the direction 0, 48, ..., in the square spiral whose vertices are the generalized 18-gonal numbers. - Omar E. Pol, Oct 03 2011 For n>0, a(n) represents the area of the triangle with vertices at ((n-1)^2, n^2), ((n+1)^2, (n+2)^2), and ((n+3)^2, (n+2)^2). - J. M. Bergot, May 22 2014 For n>0, a(n) is the number of self-intersecting points in star polygon {4*(n+1)/(2*n+1)}. - Bui Quang Tuan, Mar 28 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Star Polygon Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 8*n*(n+1). G.f.: 16*x/(1-x)^3. a(n) = A069129(n+1) - 1. - Omar E. Pol, Apr 26 2008 a(n) = C(n+1,2)*4^2, n>=0. - Zerinvary Lajos, Aug 07 2008 a(n) = A000217(n)*16. - Omar E. Pol, Dec 12 2008 a(n) = 8n^2 + 8n = A002378(n)*8 = A046092(n)*4 = A033996(n)*2. - Omar E. Pol, Dec 12 2008 a(n) = a(n-1)+16*n, (with a(0)=0). - Vincenzo Librandi, Nov 17 2010 EXAMPLE 3 X 3-Board: knight can be placed in 8 positions with 2 moves from each, so a(1) = 16. MAPLE seq(binomial(n+1, 2)*4^2, n=0..33); # Zerinvary Lajos, Aug 07 2008 MATHEMATICA CoefficientList[Series[16 x/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 24 2014 *) LinearRecurrence[{3, -3, 1}, {0, 16, 48}, 50] (* or *) 16*Accumulate[ Range[ 0, 50]] (* Harvey P. Dale, Aug 05 2018 *) PROG (MAGMA) [8*n*(n+1): n in [0..50]]; // Wesley Ivan Hurt, May 22 2014 (PARI) a(n)=8*n*(n+1) \\ Charles R Greathouse IV, Sep 30 2015 CROSSREFS Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A002492 (Bishop) and A049450 (Pawn). Cf. A000217, A069129, A027468, A008586 A038231, A002378, A033996, A046092. Sequence in context: A084112 A050428 A134605 * A189972 A023648 A098322 Adjacent sequences:  A035005 A035006 A035007 * A035009 A035010 A035011 KEYWORD easy,nonn,nice AUTHOR Ulrich Schimke (ulrschimke(AT)aol.com), Dec 11 1999 EXTENSIONS More terms from Erich Friedman Minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 00:47 EDT 2019. Contains 324223 sequences. (Running on oeis4.)