login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033586 a(n) = 4*n*(2*n + 1). 21
0, 12, 40, 84, 144, 220, 312, 420, 544, 684, 840, 1012, 1200, 1404, 1624, 1860, 2112, 2380, 2664, 2964, 3280, 3612, 3960, 4324, 4704, 5100, 5512, 5940, 6384, 6844, 7320, 7812, 8320, 8844, 9384, 9940, 10512, 11100, 11704, 12324, 12960, 13612, 14280 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of possible king moves on an (n+1) X (n+1) chessboard. - Ulrich Schimke (ulrschimke(AT)aol.com)

Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A085250 in the same spiral. - Omar E. Pol, Sep 03 2011

Sum of the numbers from 3n to 5n. - Wesley Ivan Hurt, Dec 22 2015

a(n) is the second Zagreb index of the friendship graph F[n]. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The friendship graph (or Dutch windmill graph) F[n] can be constructed by joining n copies of the cycle graph C[3] with a common vertex. - Emeric Deutsch, Nov 09 2016

REFERENCES

E. Bonsdorff, K. Fabel and O. Riihimaa, Schach und Zahl (Chess and numbers), Walter Rau Verlag, Dusseldorf, 1966.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

Tim Krabbe, Open Chess Diary, see item 221

Wikipedia, Friendship graph

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

Binomial transform of [12, 28, 16, 0, 0, 0, ...] = (12, 40, 84, 144, 220, ...). - Gary W. Adamson, Oct 24 2007

a(n) = 4 * A014105(n). - Johannes W. Meijer, Feb 04 2010

a(n) = 16*n+a(n-1)-4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010

a(0)=0, a(1)=12, a(2)=40, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2. - Harvey P. Dale, May 10 2011

G.f.: 4*x*(3+x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012

From Wesley Ivan Hurt, Feb 25 2014, Dec 22 2015: (Start)

a(n) = A008586(n) * A005408(n).

a(n) = Sum_{i=3n..5n} i.

a(-n) = A085250(n). (End)

E.g.f.: (8*x^2 + 12*x)*exp(x). - G. C. Greubel, Jul 16 2017

EXAMPLE

3 X 3 board: king has 4*5 moves, 4*3 moves and 1*8 moves, so a(2)=40.

a(2)=40. Indeed, the friendship graph F[2] has 2 edges with end-point degrees 2,2 and 4 edges with end-point degrees 2,4. Then the second Zagreb index is 2*4 + 4*8 = 40. - Emeric Deutsch, Nov 09 2016

MAPLE

A033586:=n->4*n*(2*n+1); seq(A033586(n), n=0..60); # Wesley Ivan Hurt, Feb 25 2014

MATHEMATICA

Table[4n*(2n + 1), {n, 0, 60}] (* Stefan Steinerberger, Apr 08 2006 *)

LinearRecurrence[{3, -3, 1}, {0, 12, 40}, 60] (* Harvey P. Dale, May 19 2011 *)

PROG

(PARI) a(n)=4*n*(2*n+1) \\ Charles R Greathouse IV, Jul 16, 2011

(MAGMA) [4*n*(2*n + 1) : n in [0..50]]; // Wesley Ivan Hurt, Dec 22 2015

CROSSREFS

Cf. A035005 (Queen), A035006 (Rook), A035008 (Knight), A002492 (Bishop) and A049450 (Pawn).

Cf. A000217, A005408, A008586, A014105, A085250.

Sequence in context: A114815 A175583 A109766 * A211786 A180093 A137389

Adjacent sequences:  A033583 A033584 A033585 * A033587 A033588 A033589

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Erich Friedman

Crossref added, minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 12:33 EST 2018. Contains 299379 sequences. (Running on oeis4.)