This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035005 Number of possible queen moves on an n X n chessboard. 9
 0, 12, 56, 152, 320, 580, 952, 1456, 2112, 2940, 3960, 5192, 6656, 8372, 10360, 12640, 15232, 18156, 21432, 25080, 29120, 33572, 38456, 43792, 49600, 55900, 62712, 70056, 77952, 86420, 95480, 105152, 115456, 126412, 138040, 150360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The number of (2 to n) digit sequences that can be found reading in any orientation, including diagonals, in an (n X n) grid. - Paul Cleary, Aug 12 2005 Obviously A035005(n) = A002492(n-1) + A035006 (n) since Queen = Bishop + Rook. - Johannes W. Meijer, Feb 04 2010 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550, 2013. - From N. J. A. Sloane, Feb 13 2013 Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1). FORMULA a(n) = (n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3. a(n) = 4 * A162147(n-1). - Johannes W. Meijer, Feb 04 2010 a(0)=0, a(1)=12, a(2)=56, a(3)=152, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4). - Harvey P. Dale, Aug 24 2011 a(n) = 2*n*(1-6*n+5*n^2)/3. G.f.: 4*x^2*(3+2*x)/(1-x)^4. - Colin Barker, Mar 11 2012 EXAMPLE 3 X 3-board: queen has 8x6 moves and 1x8 moves, so a(3)=56. MATHEMATICA Table[(n-1)2n^2+(4n^3-6n^2+2n)/3, {n, 40}] (* or *) LinearRecurrence[ {4, -6, 4, -1}, {0, 12, 56, 152}, 40] (* From Harvey P. Dale, Aug 24 2011 *) PROG (MAGMA) [(n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3: n in [1..40]]; // Vincenzo Librandi, Jun 16 2011 CROSSREFS Cf. A033586 (King), A035006 (Rook), A035008 (Knight), A002492 (Bishop) and A049450 (Pawn). Sequence in context: A133001 A104188 A069552 * A001386 A046998 A212507 Adjacent sequences:  A035002 A035003 A035004 * A035006 A035007 A035008 KEYWORD nonn,easy,nice AUTHOR Ulrich Schimke (ulrschimke(AT)aol.com) EXTENSIONS More terms from Erich Friedman STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 09:25 EDT 2019. Contains 327995 sequences. (Running on oeis4.)