login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028895 5 times triangular numbers: a(n) = 5*n*(n+1)/2. 30
0, 5, 15, 30, 50, 75, 105, 140, 180, 225, 275, 330, 390, 455, 525, 600, 680, 765, 855, 950, 1050, 1155, 1265, 1380, 1500, 1625, 1755, 1890, 2030, 2175, 2325, 2480, 2640, 2805, 2975, 3150, 3330, 3515, 3705, 3900, 4100, 4305, 4515, 4730, 4950, 5175, 5405, 5640 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sequence found by reading the line from 0, in the direction 0, 5, ... and the same line from 0, in the direction 0, 15, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Axis perpendicular to A195142 in the same spiral. - Omar E. Pol, Sep 18 2011

Bisection of A195014. Sequence found by reading the line from 0, in the direction 0, 5, ..., and the same line from 0, in the direction 0, 15, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is the main diagonal of the spiral. - Omar E. Pol, Sep 25 2011

a(n) = the Wiener index of the graph obtained by applying Mycielski's construction to the complete graph K(n) (n>=2). - Emeric Deutsch, Aug 29 2013

Sum of the numbers from 2*n to 3*n for n=0,1,2,... - Wesley Ivan Hurt, Nov 27 2015

Numbers k such that the concatenation k625 is a square, where also 625 is a square. - Bruno Berselli, Nov 07 2018

From Paul Curtz, Nov 29 2019: (Start)

Main column of the pentagonal spiral for n (A001477):

50

49 30 31

48 29 15 16 32

47 28 14 5 6 17 33

46 27 13 4 0 1 7 18 34

45 26 12 3 2 8 19 35

44 25 11 10 9 20 36

43 24 23 22 21 37

42 41 40 39 38

(End)

REFERENCES

D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.

LINKS

Ivan Panchenko, Table of n, a(n) for n = 0..1000

Rangaswami Balakrishnan and S. Francis Raj, The Wiener number of powers of the Mycielskian, Discussiones Math. Graph Theory, Vol. 30, No. 3 (2010), pp. 489-498 (see Theorem 2.1).

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: 5*x/(1-x)^3.

a(n) = 5*n*(n+1)/2 = 5*A000217(n).

a(n+1) = 5*n+a(n). - Vincenzo Librandi, Aug 05 2010

a(n) = A005891(n) - 1. - Omar E. Pol, Oct 03 2011

a(n) = A130520(5n+4). - Philippe Deléham, Mar 26 2013

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Wesley Ivan Hurt, Nov 27 2015

a(n) = Sum_{i=0..n} A001068(4i). - Wesley Ivan Hurt, May 06 2016

E.g.f.: 5*x*(2 + x)*exp(x)/2. - Ilya Gutkovskiy, May 06 2016

a(n) = A055998(3*n) - A055998(2*n). - Bruno Berselli, Sep 23 2016

From Amiram Eldar, Feb 26 2022: (Start)

Sum_{n>=1} 1/a(n) = 2/5.

Sum_{n>=1} (-1)^(n+1)/a(n) = (2/5)*(2*log(2) - 1). (End)

MAPLE

[seq(5*binomial(n, 2), n=1..45)]; # Zerinvary Lajos, Nov 24 2006

MATHEMATICA

Table[Sum[i + 2*n - 1, {i, 2, n}], {n, 45}] (* Zerinvary Lajos, Jul 11 2009 *)

Table[5 n (n + 1)/2, {n, 0, 50}] (* Bruno Berselli, Sep 23 2016 *)

PROG

(Magma) [5*n*(n+1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Jun 09 2014

(PARI) a(n)=5*n*(n+1)/2 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A000217, A001068, A005891, A028896, A046092, A055998, A085787, A130520, A195013, A195014, A195142.

Cf. index to numbers of the form n*(d*n+10-d)/2 in A140090.

Cf. A000566, A005475, A005476, A033583, A085787, A147875, A192136, A326725 (all in the spiral).

Sequence in context: A319930 A357690 A341984 * A194150 A341065 A246817

Adjacent sequences: A028892 A028893 A028894 * A028896 A028897 A028898

KEYWORD

nonn,easy

AUTHOR

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 05:50 EST 2022. Contains 358578 sequences. (Running on oeis4.)